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Additive X -rank decomposition
Let X ⊆ V be an algebraic variety, which lives in an affine space V . For a given T ∈ CN ,
the X -rank problem is to find x1, . . . , xr such that

T = x1 + . . .+ xr ,

and such that r is minimal. This r is called the X -rank of T , denoted rankX T .

Examples:
1. Matrix rank: X = {abT | a, b ∈ Cn}, V = Cn×n.
2. Tensor rank: X = {a ⊗ b ⊗ c | a, b, c ∈ Cn}, V = Cn×n×n.
3. Skew rank: X = {a ∧ b ∧ c | a, b, c ∈ Cn}, V = Λ3(Cn).
4. Chow rank: X = {abc | a, b, c ∈ Cn}, V = S3(Cn).

Here: uv = 1
2(u ⊗ v + v ⊗ u) and u ∧ v = 1

2(u ⊗ v − v ⊗ u).
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Why should we care about additive X -rank?
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Gaussian mixture models and X-rank

A mixture of r Gaussians
N (µ1,Σ1), . . . ,N (µr ,Σr ) is sam-
pled by choosing i ∈ {1, . . . , r} at
random, then sampling the Gaussian
with parameters (µi ,Σi).

The order-5 moments of a (uniform) mixture Y of
Gaussians N (µ1,Σ1), . . . ,N (µr ,Σr ) can be
collected either in a symmetric tensor
E∼Y [Y ⊗5] ∈ Cn×...×n or in the coefficients of the
quintic homogeneous polynomial E∼Y [(Y T x)5] in
variables x = (x1, . . . , xn).
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Application: Gaussian mixtures
The order-5 moments of a (uniform) mixture Y of Gaussians N (µ1,Σ1), . . . ,N (µr ,Σr ) are
the coefficients of the quintic form 1

E∼Y [(Y T x)5] = c5
r

r∑
i=1

(µT
i x)5 + 10(µT

i x)3(xTΣix) + 15(µT
i x)(xTΣix)2

Theorem (B.-Casarotti)
The parameters of a general Gaussian mixture model are identifiable from the fifth order
moments, if the rank r of the mixture is bounded by
r ≤ 1

(n+1
2
)+n

(n+d−1
d

)
−

(n+1
2

)
− n − 1 = O(n3).

Under more restrictive assumptions, there exist efficient algorithms to recover the
parameters from moments.

1NB: Generally, the moments can be obtained from the identity of characteristic functions
φY (x) = E∼Y [exp(

◦
ıY T x)] =

∑r
i=1 exp(

◦
ıxTµi − 1

2
xTΣix).
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Nick’s Example

If a fluorophore is hit by white light, the emitted Fourier spectrum will be a sum of Voigt
profiles2 centered around its emission frequencies.

A Voigt profile Vσ,λ(x) =
∫

Gσ(τ)Lλ(x − τ) is a convolution of a Gaussian and a
Cauchy-Lorentz distribution.

In the limit λ → 0, we get a Gaussian mixture.

Distributions Y → Moments E∼Y [Yi1 · · ·Yid ] → Symmetric tensors E∼Y [Y ⊗d ].

2W. Demtröder, Laser Spectroscopy 1
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Central questions on X -rank

(A) How many terms from X do we need to express general tensors T? (generic rank)
(B) When are additive rank decompositions unique? (nondefectivity/identifiability)
(C) When can we solve additive rank problems? (algorithms)

If X is “nice” (for instance, if X is a GLn-invariant subvariety of the symmetric or
alternating tensor space), then (A) and (B) have simple approximate answers.
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Coarse answers to (A) and (B)

Theorem (B.-Casarotti, 2023)
Let X be an (irreducible) affine cone in a space V , where V is also an irreducible G-module.
Assume that X is G-invariant (GX ⊆ X). Then,
(A) The generic X -rank is at most dimV

dimX + dimX .
(B) General forms of X -rank r ≤ dimV

dimX − dimX − 1 have finitely many minimum rank
decompositions.

Under a technical condition (Gauß map of X nondegenerate), (B) can be strengthened to
“unique minimum rank decomposition” (Massarenti-Mella, 2024).

Examples: For general (sym.) 3-tensors of Chow rank-r , the minimum decomposition is
unique, if r ≤ O(n2). Analogous results for skew rank, tensor rank etc.
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A sneak peak into nondefectivity proofs
Theorem (B.-Casarotti, 2023)
Let X be an irreducible affine cone in a space V , where V is also an irreducible G-module.
Assume that X is G-invariant (GX ⊆ X). Then,
(A) The generic X -rank is at most dimV

dimX + dimX .
(B) General forms of X -rank r ≤ dimV

dimX − dimX have finitely many minimum rank
decompositions.

Proof sketch.
Step 1: Consider the dimension ar of the space (Tx1X + . . .+ Txr X) ∩ TyX , where
x1, . . . , xr , y are generic points of X .
Step 2: Show that either ar = 0 or ar = dimX or ar < ar+1.
Step 3: Conclude there are at most dimX possible values of r with ar /∈ {0,dimX}.
Trick in Step 2: If ar = ar+1, then V contains an irreducible G-module of dimension ≥ ar .
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Some new answers to question (C)

Computing decompositions is much harder than showing uniqueness, even for general
tensors. Still, if X has nice invariance properties, we can do something for small ranks.

Theorem (Vannieuwenhoven, 2024, “Chiseling”)
There is a time-O(n7) algorithm which computes the unique minimum skew rank
decomposition of a concise alternating tensor T ∈ Λ3(C3n) ⊆ C3n×3n×3n of skew rank n.

Theorem (B.-Lovitz, 2025, Contraction varieties)
There is a linear-time algorithm which computes the unique minimum Chow rank
decomposition of a concise symmetric tensor T ∈ S3(C3n) ⊆ C3n×3n×3n of Chow rank n.

There is a subquadratic time algorithm which computes the unique minimum Chow rank
decomposition of a general symmetric tensor T ∈ S2d+1(C3n) of Chow rank
r ≤ 1

cd

(n+d−1
d

)
− cd ≈ nd , where cd =

(
2d+1

d
)

and n ≥ 2d + 1.
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The contraction variety
Let T ∈ Cn×n×n be a 3-tensor. For f ∈ Cn, we write Tf for the contraction of T by f . So
Tf = f1Te1 + . . .+ fnTen , where Tei are the slices of T . Visualized:

The contraction variety of T is defined as

YT = {f ∈ Cn | det(Tf ) = 0}.
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Some contraction varieties

(A) Tensor Rank If T =
∑n

i=1 a⊗3
i and a1, . . . , an are linearly independent, then

YT =

n⋃
i=1

〈ai〉⊥

(B) Chow Rank For n = 3r , if T =
∑r

i=1 ai1ai2ai3 and {aij}i=1,...,r ,j=1,2,3 is linearly
independent, then

YT =

r⋃
i=1

〈ai1〉⊥ ∪ 〈ai2〉⊥ ∪ 〈ai3〉⊥.

(C) Skew Rank For n = 3r , if T =
∑r

i=1 ai1 ∧ ai2 ∧ ai3 and {aij}i=1,...,r ,j=1,2,3 is linearly
independent, then

YT =

r⋃
i=1

〈ai1, ai2, ai3〉⊥.
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The contraction variety II

Proposition
Let T ∈ Cn×n×n be a concise symmetric tensor of symmetric rank n. Then, YT is a union
of hyperplanes.

Proof.
By the rank assumption, we have T =

∑n
i=1 a⊗3

i for some ai ∈ Cn. By conciseness, we
know that a1, . . . , an ∈ Cn are linearly independent. A contraction has the form

Tf =
n∑

i=1

〈ai , f 〉aiaT
i .

Obviously, this has full rank if and only if 〈ai , f 〉 6= 0 for all i = 1, . . . , n. Therefore,

YT =

n⋃
i=1

〈ai〉⊥.
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Spectral algorithm

det(Tf −λg) = det(Tf − λTg) = 0 ⇐⇒ det(T−1
g Tf − λIn) = 0

This is a (generalized) eigenvalue problem and can be solved fast (time O(n3) = O(|T |)).
The eigenvectors xi satisfy Tf xi = const · ai .
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Spectral algorithm
Input: A concise symmetric tensor T of symmetric rank n.
Output: The unique minimum rank decomposition T =

∑n
i=1 a⊗3

i of the tensor.

(1) Pick generic f , g ∈ Cn and consider the general line L : λ 7→ f − λg .
(2) Compute the intersection points hi = f − λig of the line with YT , i = 1, . . . , n.
(3) Compute corresponding kernel elements xi ∈ kerThi .
(4) Output {Tf xi}i=1,...,r , which equals {ai}i=1,...,n up to scalar multiples.

Correctness: Since YT =
⋃n

i=1〈ai〉⊥, a general line intersects YT in n simple points hi , one
for each irreducible component. W.l.o.g., let hi ∈ 〈ai〉⊥. Then, if xi ∈ kerThi , we see that
xi ⊥ aj for each j 6= i . Thus, Tf xi = 〈ai , f 〉〈ai , xi〉ai is a nonzero multiple of ai .
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Summary
1. Additive X -rank decompositions well-behaved when X has good invariance properties.
2. Useful to extract information from data that is “mixed together”.
3. Identifiability of Gaussian mixtures from moments of order 5 or higher. Algorithms for

rank ≤ n − 1 available in special cases (homoscedastic or centered (B.)) or for very low
rank r =

√
n (Ge-Huang-Kakade, 2015).

4. Chow decompositions of cubic forms can be computed in linear time. For higher
odd-order forms in subquadratic time. (B.-Lovitz)

Chow decompositions (left) and nondefectivity of reducible X -rank decompositions (right).

Merci pour votre attention !
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