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M e Kmxm = KM @ K" is of rank r iff there exist
U e Kn*m Vv e K™% jnvertible and X, diagonal invertible s.t.

M=U x 0 vt
0 O
>, not unique

e Y, =1 forsome U, V.

e U,V unitary = Singular Value Decomposition
e U, V are eigenvectors of M M* (resp. M*M)

Best low rank approximation from truncated SVD



Multilinear tensors of K =R, C, ...

A tri-linear tensor T € KM*mXn — KM ¢ K" g K"

I
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=120 (=
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Decomposition of a trilinear tensor

r
T=) Ui®V;® W, with U; e K™, V; e K™, W; € K™
j=1

with r minimal.
Coefficent-wise: Tj, j, is = ijl Uy jV

i2,j Wi, J



Decomposition and diagonalisation

TeKmtK2gK™= = [T[,-]]fil pencil of n3 matrices of size n; x no.
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Decomposition and diagonalisation

TeKT"K?2gK3 = [T[i]]7i1 pencil of n3 matrices of size ny x no.

¥

For TeK @K' @ K™,
T=) U®V,eWwith U,V eK™* WeK™"
j=1
iff Ty = Udiag(Wi1,...,W; )V* i€lin

If Tjy inv., U = matrix of common eigenvectors of M; = T; T[I]l

V~t = matrix of common eigenvectors of M/ = 7'[1]1 Tiip -



Decomposition and diagonalisation

TeKT"K?2gK3 = [T[i]]7i1 pencil of n3 matrices of size ny x no.
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For TeK @K' @ K™,
T=) U®V,eWwith U,V eK™* WeK™"
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Decomposition (when To = 3. /; Ty invertible):
e Compute the common eigenvectors U of M; = Ty; TO_1 for To = > i Typ;

o Deduce the common eigenvectors V~¢%q = Ty 'U of M! = Ty T; and
diag(vvi,la ccog VVi,r) = UT[I] Vﬁt;

Known as Jennrich algorithm (19707).



Decomposition (when To = 3. /; Ty invertible):
e Compute the common eigenvectors U of M; = Ty; TO_1 for To = > i Typ;

o Deduce the common eigenvectors V~¢%q = Ty 'U of M! = Ty T; and
diag(vvi,la ccog VVi,r) = UT[I] Vﬁt;
Known as Jennrich algorithm (19707).
= We associate to the decomposition of T an Artinian algebra:

» The matrices (M;);c[n of size r are commuting.
» Let R=XK],...,xy) = K[x] be the ring of polynomials in the
variables x1,...,x,, v € K" and

I ={p(x1,...,xn) € R:p(My,...,M,)(v) =0}

» [ is an ideal of R (vector space of K stable by mult. by g € R);
A = R/l the quotient algebra, is of dimension < r (i.e. Artinian
algebra).



Sequences of values

Given a sequence of values

90079017-“7‘;056@7

1= Find/guess the values of ¢, for all n € N.



Sequences of values

Given a sequence of values

90079017-“7‘;056@7

1= Find/guess the values of ¢, for all n € N.

i Find r € N,wj, & € C such that ¢, = > 7 wi&", for all n € N.



Sequences of values

Given a sequence of values

()007@17"'7()056@7

1= Find/guess the values of ¢, for all n € N.

i Find r € N,wj, & € C such that ¢, = > 7 wi&", for all n € N.

Example: 0,1, 1, 2,3,5,8,13, ....
Solution:
» Find a recurrence relation valid for the first terms: @12 — @x+1 — @k = 0.

» Find the roots & = 1+\/ &= 1—‘[ (golden numbers) of the characteristic
polynomial: x2 —x — 1 =

» Deduce ¢, = %(12‘@)” -

O

(17\/§)n_

Sl



Prony’s method (1795)

For the signal f(t) = >;_, wieSt, (wj, ¢ € C),
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For the signal f(t) = >;_, wieSt, (wj, ¢ € C),

e Evaluate f at 2r regularly spaced points: g := f(0),¢1 := f(1),...



Prony’s method (1795)

For the signal f(t) = >;_, wieSt, (wj, ¢ € C),
e Evaluate f at 2r regularly spaced points: g := f(0),¢1 := f(1),...
e Find p = [po,...,pr] With pr = 1 s.t. Qyr + @rrnPr—1+ -+ @rpo = 0 by

solving:
& %o ¥1 cee Pr Po
¥1 Pre1 P1 _0
Pr—1 .. Y2r—1 $Y2or—1 Pr



Prony’s method (1795)

For the signal f(t) = >;_, wieSt, (wj, ¢ € C),
e Evaluate f at 2r regularly spaced points: g := f(0),¢1 := f(1),...
e Find p = [po,...,pr] With pr = 1 s.t. Qyr + @rrnPr—1+ -+ @rpo = 0 by

solving:
& %o ¥1 cee Pr Po
¥1 Pre1 P1 _0
Pr—1 .. Y2r—1 $Y2or—1 Pr

e Compute the roots & = e, ..., & = e of p(x) :=Y1_, pix’

(or generalized eigenvalues of (Ho, H1))
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For the signal f(t) = >;_, wieSt, (wj, ¢ € C),

e Evaluate f at 2r regularly spaced points: g := f(0),¢1 := f(1),...
e Find p = [po,...,pr] With pr = 1 s.t. Qyr + @rrnPr—1+ -+ @rpo = 0 by
solving:
Yo 1 Pr Po
1 Pri1 P1
. . . =0
Pr—1 .. Y2r—1 $Y2or—1 Pr

Compute the roots & = e, ... & = e% of p(x) :=YI_, pix’

(or generalized eigenvalues of (Ho, H1))

e Solve the system
1 cee e 1 w1 Yo
&1 &r wo 1
i_l Y wy Or_1 6



Since p, =1, we have —p;pg — -+ — Yiyr—1pr—1 = @itr and
Ho My Hy
Yo Y1 ... Prea 0 —Po P1 P2 S ©r
P1 1 —pP1 P2
Pr—1  Pr ... P2r-2 —Pr—1 Pr Pre1 - P2r—1



Since p, =1, we have —p;pg — -+ — Yiyr—1pr—1 = @itr and

Ho M Hy
Yo Y1 ... Prea 0 —Po P1 P2 S ©r
P1 : 1 "e —p1 P2
. . 0 . . .
Pr—1  Pr ... P2r-2 1 —p—1 Yr Pre1r .. P2r—1

M, = Hngl compagnon matrix of p
= matrix of multiplication by x in A = K[x]/(p)

in the basis {1,x,...,x"1}



Since p, =1, we have —p;pg — -+ — Yiyr—1pr—1 = @itr and

Ho M Hy
Yo Y1 ... Prea 0 —Po P1 P2 S ©r
P1 : 1 "e —p1 P2
. . 0 . . .
Pr—1  Pr ... P2r-2 1 —p—1 Yr Pre1r .. P2r—1

M, = Hngl compagnon matrix of p
= matrix of multiplication by x in A = K[x]/(p)

in the basis {1,x,...,x"1}

= We associate with ¢, the Artinian algebra A = K[x]/(p).



Sequences and symmetric tensors

Given a sequence of values ¢ = (o, . .., pq), we define the symmetric
tensor or binary form:

d
d —i i
FZ¢;<i>xg X1

Using the apolar product: for f =3, _,; fax®.g = 3|, —q 8a X",

(f.8)d =) faka (Z)l-

|oo|=d
we have (F,g) = > ©ig(d—i,i)-
If pj = 7 wi €] then

w5 F =30 wi(xo+&ix)?
(e <F7g>d - Z}:lwi g(lagj)



Sylvester approach (1851)




Sylvester approach (1851)

Theorem:

The binary form T(xo, x1) = 3% ti(9)x¢~"x{ can be decomposed as a

i
sum of r distinct powers of linear forms

T = Zwk(akxo + ‘kal)d
k=1



Sylvester approach (1851)

Theorem:

The binary form T(xo, x1) = 3% ti(9)x¢~"x{ can be decomposed as a

i
sum of r distinct powers of linear forms

T = Zwk(akxo + ‘kal)d
k=1

iff there exists a polynomial p(xp, x1) := poxg§ + p1x6_1x1 + - 4 prx{ st

to t1 .. {7 Po

t tr1 p1
=0

tg—r ... td—1 t4 pr

and of the form p = ¢ [} _;(Okxo — axx1) with (ax : Bx) distinct.

If ax #0, & = i—t root of p(x) = 3_7_, pix' (or generalized eigenvalues of (Ho, Hz)). 9



Example with Fibonacci sequence ¢ = (0,1,1,2,3,5,8,13,...), d =4

> F =31 00i(Ixdxi = 4xx1 + 653x¢ + 8x0x3 + 3x¢

> k=2d—k=2
0 1 1

HZ? = (pijlo<ijes=| 1 1 2
1 2 3

» rank H,%-’z =§))

1 1
> HZ? = el 1 & &
T =| & & |diaglnw)| b6 &
& & 2

with &; rootsosz—X—1:0forX:%_

10



Symmetric tensor decomposition

and Waring problem (1770)

11



Symmetric tensor decomposition

and Waring problem (1770)

Symmetric tensor decomposition problem:

Given a homogeneous polynomial F € Sy of degree d in the variables

x = (x0, X1, - .., X,) with coefficients € K:
F(x)= Y Fax®
|ar]=d

find a minimal decomposition of F of the form

F(x) = Zwi(&,oxo +&axa+ o+ Eiaxa) = Zw,- (gl,,g)d
=

i=1

with & = (&0,&1,---,& ) € K”H spanning disctint lines, w; € K.
S; ,05 G, :
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Symmetric tensor decomposition

and Waring problem (1770)

Symmetric tensor decomposition problem:

Given a homogeneous polynomial F € Sy of degree d in the variables

x = (x0, X1, - .., X,) with coefficients € K:
F(x)= Y Fax®
|ar]=d

find a minimal decomposition of F of the form

F(x) = Zwi(&,oxo +&axa+ o+ Eiaxa) = Zw,- (gl,,g)d
=

i=1

. —nt1 . o —
with §’, = (80,8 1,--,8&n) € K spanning disctint lines, w; € K.

The minimal r in such a decomposition is called the rank of T.

11



Generalized Additive or larrobino Decomposition

Generalized Additive Decomposition problem:

find r', wi(x) € Sk fori=1,...,r and = = [&,...,&] € K+1D)xr" such that

F= Zw, (&, x)7H

with ¢; = (&, x) not dividing w; and r = ). rank, (w;) minimal.

12



Generalized Additive or larrobino Decomposition

Generalized Additive Decomposition problem:

find r', wi(x) € Sk fori=1,...,r and = = [&,...,&] € K+1D)xr" such that

F= Zw, (&, x)7H
with ¢; = (&, x) not dividing w; and r = ). rank, (w;) minimal.

Example: For d > 5, F = x{ " 'x; 4+ (x0 + x1 +2x2)972(x0 — x1)? is a GAD with

r = ranky (x1) + ranke, (xo — x1)?  (defined latter)
2ard =8

with /1 = xg, o = xp + x1 + 2x5.

12



Geometric point of view

® Vpi1d = {w(&x)4,we K, e KL ¢ £ 0} Veronese variety
o Trird = {w(x) (€, x)7L, w(x) € ST, € K™1,¢ # 0} tangential
variety (= points on tangents to Vpi1,4)-

° On+1d = {w(x) (&, x)? 7, w(x) € Sk, & € K™ ¢ £ 0} osculating
variety (= points on oscullating linear spaces to V11 4).

13



Geometric point of view

® Vpi1d = {w(&x)4,we K, e KL ¢ £ 0} Veronese variety

o Trisg = {w(x) (& X9, w(x) € §%, € € K™, € # 0} tangential
variety (= points on tangents to Vpi1,4)-

° On+1d = {w(x) (&, x)? 7, w(x) € Sk, & € K™ ¢ £ 0} osculating
variety (= points on oscullating linear spaces to V11 4).

Proposition

— O ;
The singular locus of OF ; 4 is (’)n+1 ¢ Vot1,d = Opyy 4 is smooth.
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Geometric point of view

® Vpi1d = {w(&x)4,we K, e KL ¢ £ 0} Veronese variety

o Trisg = {w(x) (& X9, w(x) € §%, € € K™, € # 0} tangential
variety (= points on tangents to Vpi1,4)-

° On+1d = {w(x) (&, x)? 7, w(x) € Sk, & € K™ ¢ £ 0} osculating
variety (= points on oscullating linear spaces to V11 4).

Proposition

— O ;
The singular locus of OF ; 4 is (’)n+1 ¢ Vot1,d = Opyy 4 is smooth.

r/
F = Zwi(é)(ghé)d—k; is 2 GAD iff Fe Z +1 d)smooth
i=1

13



From sequences to symmetric tensors

» From multi-index sequences: ¢ = (04 )aen € KV indexed by
a=(aq,...,a,) € N called moment sequences.

14



From sequences to symmetric tensors

» From multi-index sequences: ¢ = (04 )aen € KV indexed by
a=(aq,...,a,) € N called moment sequences.

» to linear functionals: ¢ € K[xq, ..., x| ={¢ : Klx,..., xn] — K, linear}
p:p= Zpax — (plp) = Z%pa

The coefficients (p|x*) = ¢, € K, a € N” are called the moments of ¢.

(Y*)acnn (resp. (£2*)aen) dual basis in R* of the monomial basis (x*)aene
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From sequences to symmetric tensors

» From multi-index sequences: ¢ = (04 )aen € KV indexed by
a=(aq,...,a,) € N called moment sequences.

» to linear functionals: ¢ € K[xq, ..., x| ={¢ : Klx,..., x;] = K, linear}
p:p= Zpax — (plp) = Z%pa

The coefficients (p|x*) = ¢, € K, a € N” are called the moments of ¢.
(Y*)acnn (resp. (£2*)aen) dual basis in R* of the monomial basis (x*)aene
» to formal power series:

QO(_Y) = ZQEN" ‘Paya € K[[yla 000 7)/n]] ‘;(Z) - zuemﬂ Pa i'}\ S ]K[[Zle ce ey Zn]]
where a! = [[ ;! for a = (aq,...,a,) € N,

14



From sequences to symmetric tensors

» From multi-index sequences: ¢ = (04 )aen € KV indexed by
a=(aq,...,a,) € N called moment sequences.

» to linear functionals: ¢ € K[xq, ..., xol* ={¢: K[x,..., xn] — K, linear}
p:p= Zpax — (plp) = Z%pa

The coefficients (p|x*) = ¢, € K, a € N” are called the moments of ¢.
(Y*)acnn (resp. (£2*)aen) dual basis in R* of the monomial basis (x*)aene
» to formal power series:

P(Y) = Toenw 9oy €Ky, - yall  0(2) = X pcrm vl € Klfza, -, 24]]
where a! = [[ ;! for a = (aq,...,a,) € N,

» to symmetric tensors of degree d:

d o o
<p[o/]: Z %<a>xg |ex] {11“.Xnn68d.

lal<d
14



From tensors to linear functionals

Apolar product: For F =37, fox® F' =3 ,_,fix* €S,

(F,Flya= Y <Z) 1fa fl.
Properties:
o (F.(u-x)%)q = F(u)
o (F (v x) (vie- x)(u-x)7*) = CEDy, . Dy, F(u)

= For an orthonormal basis uy, ..., u, of K™, (1/ (£ H, (Ui - X)%)|a)=d
orthonormal basis of S°.

Definition
For F € 8¢ and h € S¥,

F*:peS?— (F,p) € Kis a linear functiona € S9*

Co-multiplication by S: g« F* : p€ S % (F,pq) 15



Decompositions of tensors or series

If F= 27:1 w‘,(ld with ¢; = (Xo -+ 5;71X1 + -+ f,',,,Xn), then

[ = ZW[éilsd with ¢, Dirac or evaluation at . = (1,¢&;)
i=1

= (Zw,-eéi(g I with ec(z ZE”* o[/l — degree d part.

16



Decompositions of tensors or series

If F= 27:1 w‘,(ld with ¢; = (Xo -+ 5;71X1 + -+ gi,an), then

[ = ZW[éilsd with ¢, Dirac or evaluation at . = (1,¢&;)
i=1

= (Zw,-eéi(g I with ec(z ZE”* o[/l — degree d part.

If F = Zlle w,ffiik’ with f,’ = (Xo + §,-,1X1 AP oo e g,",,Xn), then
~ di, [
= (D_wi"*(2)ee (2)
i=1

F(2) = (wa’l"’z(z)e&(z))[gd] setting xp = 1

- ki—i dex _ N (d—J)!
with w; = ZW‘J and w; = Z i wj j(x)
J
1= Truncation of a polynomlal—exponential series in degree < d. A9



From polynomial-exponential series to Artinian algebras

Given a series p = 3" w27 € K[[Z]],

=
e Annihilator of ¢:
lo = Ann(p) = {p € K[z] : pxp =0} = {p € K[2] : Vg € K[Z] (¢, pq) = 0}
e Quotient algebra of ¢: = K[x]/I,.
e Hankel operator of ¢: Hw :peK[x] — p*xo e K[x]*
H, is also known as a convolution operator. When restricted to degrees
< (d — ¢, ¢), its matrix is known as Catalecticant or moment matrix.

By definition, |, = ker H,,.

17



From polynomial-exponential series to Artinian algebras

Given a series o = > cpa% € K[[z]],

e Annihilator of ¢:
lo = Ann(p) = {p € K[z] : pxp =0} = {p € K[2] : Vg € K[Z] (¢, pq) = 0}
e Quotient algebra of : A, = K|[x]//,.
e Hankel operator of ¢: H, : p € K[x] = p* ¢ € K[x]*
H, is also known as a convolution operator. When restricted to degrees
< (d — ¢, ¢), its matrix is known as Catalecticant or moment matrix.

By definition, I, = ker H,,.

© is a polynomial-exponential series
iff
A, is an Artinian algebra with dim A, = rank H, < oo.
17



Kronecker theorems

Univariate series:

Kronecker (1881)
The Hankel operator

H<p : CN,finite _ (CN
(pm) = (Zm 90m+npm)n€N
is of finite rank r iff Jwq,...,w € (C[z] and &1,...,& € C distincts s.t.

Z gp,, I Z wi(z)eg(z

neN

with 37 (deg(wi) +1) = r.
18



Kronecker theorems
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Kronecker (1881)
The Hankel operator

H<p : CN,finite _ (CN
(pm) = (Zm 90m+npm)n€N
is of finite rank r iff Jwq,...,w € (C[z] and &1,...,& € C distincts s.t.

Z gp,, I Z wi(z)eg(z

neN

with 37 (deg(wi) +1) = r.
18



Multivariate series:
Theorem: Generalized Kronecker Theorem [m2018]
For ¢ € R*, the Hankel operator

H,: R — R*
p — pxo
is of rank r iff
Zw, z)eg(z) with wi(z) € K[z],

with r = 27/:1 dim((wi(2))) = Z,rlzl dim(9%w;(2)). In this case, we have
o I, = ker H, with V() = {&1, ... . &}
° lcp =@:N---N Q. with QIl = <<w,>> egi(z).

w A, is Gorenstein?; (a, b) — (y|ab) is non-degenerate in A,.

i Can be generalized to ¢ = (¢1,...,0m) € (R*)™.

a g*x _ q
AL = Ag * ¢ is a free Ay-module of rank 1 19



For F € 8¢9,

o rankgag(F) minimal r = Zidim<(w‘-j’£"’x>> with F = 3" w4k

1

e ranke,crus(F) is the minimal length of a scheme [ apolar to F (i.e. F* € I3)

20



For F € 89,

o rankgag(F) minimal r = Z,-dim<<w‘-j’é”x>> with F = 3" w4k

1

® rankeacrus(F) is the minimal length of a scheme [ apolar to F (i.e. F* € 1#)

Theorem: [Barrilli-M-Taufer'2025]

Let F =, wit?™% € 89 such that w; € S¥ and ¢; € S*.
If the Castelnuovo-Mumford regularity of S// is less than %, where [ is the
ideal associated with the GAD, then

rankgaq(f) = rankescrus(f) = rank H,
where H is the Catalecticant matrix of F in degree (d — c,c) with ¢ = |41 ].

In this case, the decomposition is the unique minimal GAD, and defines the
unique minimal apolar scheme to F.

20



For F € 8¢9,

o rankgag(F) minimal r = Zl-dim<<w‘-j’é"’x>> with F = 3" w4k

1

® rankeacrus(F) is the minimal length of a scheme [ apolar to F (i.e. F* € lj)

Theorem: [Barrilli-M-Taufer'2025]

Let F =, wit?™% € 89 such that w; € S¥ and ¢; € S*.
If the Castelnuovo-Mumford regularity of S// is less than %, where [ is the
ideal associated with the GAD, then

rankgaq(f) = rankescrus(f) = rank H,
where H is the Catalecticant matrix of F in degree (d — c,c) with ¢ = |41 ].

In this case, the decomposition is the unique minimal GAD, and defines the
unique minimal apolar scheme to F.

1z Applies for Waring decompositions, tangential decompositions, . ..

20



GAD algorithm [BMT'25]

Input: F € S¢
» Perform a random change of coordinates to obtain §’.’0 =0
» Compute a basis B, B via SVD of HZ ¢
» Build the multiplication matrices M; = (HE,’B)*lHE/’)gB
» Compute the multiplicities u; via a Schur factorisation of random Zj AjM;.
» Compute the local multiplication blocks M)((f).
» Extract the points ; ;= itrace(Mg)) and set{; = xp + g et xag
» Compute the nil-indices v; = k; + 1 of M)(J) — §i d.
» if k; > d then error: a nilpotency index exceedsdthe degree bound.
» Compute w; € Sk, by solving the Vandermonde-like system
f =3 wili™", using the least square method.
Output: /;,w;, u; such that f = Ziw,-ﬂf!_k" and rankg.q(f) = >, pi.

21



Experimentation for pertubations F + eR with F = >}, w,-ﬁf’fk’, £; random in
S!, w; random in S¥ and R random in S¢ (normal centered distributions),
corresponding to the format (n, d, [ky, ko, .. .])

Stability of gad_decompose Stability of gad_decompose

—@— median —@— median
max error N max error
min error i / g min error |

o

Relative reconstruction error
g

Relative reconstruction error

o Perturbation siz{eDS 10" o Perturbation sizemﬁ5
(a) Case (n,d, k) = (9,3,[0,0,0,0,0]): (b) Case (n,d, k) =(2,5,[1,1,0]): Two
Waring decomposition - Five simple points of multiplicity 2 and one simple
points with rankg.q(F) = 5. point with rankg.q(F) = 5.

Joint work with E. Barrilli and D. Taufer.
22



Tensor extensions

When reg(S/1) is higher, we use the moment extension or extensor
approach [BCMT'10].

Extensor problem:

e Find F e 89, d" > d st. FISd = F and rank, (F) = rank, (F).

23



Tensor extensions

When reg(S/1) is higher, we use the moment extension or extensor
approach [BCMT'10].

Extensor problem:

e Find F e 89, d" > d st. FISd = F and rank, (F) = rank, (F).

Flat extension of (Hankel) matrices:
qoc _ | HEF HB.B'
o HE.B’ HE.E

23



Tensor extensions

When reg(S/1) is higher, we use the moment extension or extensor
approach [BCMT'10].

Extensor problem:

e Find F e 89, d" > d st. FISd = F and rank, (F) = rank, (F).

Flat extension of (Hankel) matrices:
e !ﬂ’ﬂﬁ Flat extension when
B,B’ B,B ,
H i rank HGC = rank HB/B'

23



Let R = K[x] and “set” xo = 1.
Definition: For B C R,
e BfF=BUx; -BU---Ux, -B,

e B connected to 1ifl € Bandform#1¢cB,3Im' € B,im€[n]:m=x, m.

24



Let R = K[x] and “set” xo = 1.
Definition: For B C R,
e BfF=BUx; -BU---Ux, -B,

e B connected to 1ifl € Bandform#1¢cB,3Im' € B,im€[n]:m=x, m.

Theorem: [taurent-M09]

Let BC CC R,B'c C' C R connected to 1 and BT c C,B’" c C’. Assume
HB"-B invertible with |B| = |B’| = r. The following points are equivalent:

’ . . ’
e HCS € is a flat extension of HE 5.

o The operators M; := (HB"B)~1HB" B commute.

24



Let R = K[x] and “set” xo = 1.
Definition: For B C R,
e Bt =BUx; -BU---Ux, - B,

e B connected to 1ifl € Bandform#1¢cB,3Im' € B,im€[n]:m=x, m.

Theorem: [taurent-M09]

Let BC CC R,B'c C' C R connected to 1 and BT c C,B’" c C’. Assume
HB"-B invertible with |B| = |B’| = r. The following points are equivalent:

e HC:C is a flat extension of HE"B,
o The operators M; := (HB"B)~1HB" B commute.

Theorem: [Brachat-Comon-M-Tsigaridas'10]

F e S%is of rank r iff 3F € S¢' of F with FIS9 = F and d’ > 2r + 1 st.
° ranngLC’C =

o HI‘; ~“¢is a flat extension of H?B with B'" C R<..

w For the Waring rank, M; = (HE/’B)*lHE/’X"B are jointly diagonalizable.
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Joint diagonalization (Joint work with Chuong Luong)

Problem
i) Compute the moments po = [ x*dpu for a measure p for |af < d.

ii) Decompose
F(x) = [+ (x, ) duly) = 30 <q 0 (2)x* = i, wi (1 + (&, %))

Joint Diagonalization
@ using the single diagonalisation of a random combination of the M;, or
@ by minimization of ming iny. >, || EM;E |0 with Jacobi updates
Exi1 = (I + Xk) Ex and gradient descent. [P. Catalat]
Computing the weights
a) explicit formulae from the joint eigenvectors, or

b) solving a Vandermonde system Va=w = B.
Improving the decomposition

» Minimization of |[F — 3", w;(&, x)?|| with Riemannian Newton steps (RNE)
and trust-region scheme [R. Khouja]
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RNE-JointVand: 30 points
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RNE-JointExpl
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RNE-JointExpl

RNE-RandExpl
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Err 2.67e-05 Err 1.69e-02
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Thanks for your attention
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