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Symmetric tensors are homogeneous polynomials

A symmetric tensor of order ω over Cn+1 is an element of the tensor space

Symω(Cn+1)∗ ⊆ (Cn+1)∗ ⊗ · · · ⊗ (Cn+1)∗︸ ︷︷ ︸
ω times

∼= C(n+1)×ω

.

Its elements are ω-dimensional tensors T = (ti1···iω ) such that

tiσ(1)···iσ(ω)
= ti1···iω for all permutations σ ∈ Sω.

For example, a tensor T ∈ Sym3(C2)∗ ⊆ (C2)∗ ⊗ (C2)∗ ⊗ (C2)∗ is a cube

t000 t010

t100 t110

t001 t011

t101 t111

with entries t000, t100 = t010 = t001, t110 = t101 = t011, t111.
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Symmetric tensors are homogeneous polynomials

We identify Symω(Cn+1)∗ with the space C[x]ω := C[x0, . . . , xn]ω of
homogeneous polynomials of degree ω in n+ 1 variables. We write

f(x0, . . . , xn) =
∑

|α|=ω

(
ω

α

)
fα x

α ∈ C[x]ω ,

where
(
ω
α

)
= ω!

α0!···αn!
. In particular, we identify f with (fα)|α|=ω ∈ C(

n+ω
ω ).

For example, we associate the binary cubic in C[x0, x1]3 = Sym3(C2)∗

f(x0, x1) = f(3,0) x
3
0 + 3 f(2,1) x

2
0x1 + 3 f(1,2) x0x

2
1 + f(0,3) x

3
1

to the vector (f(3,0), f(2,1), f(1,2), f(0,3)) ∈ C4.

f(3,0) f(2,1)

f(2,1) f(1,2)

f(2,1) f(1,2)

f(1,2) f(0,3)
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Eigenvectors of polynomials

Definition (Lim1, Qi2)

Consider ω ∈ N and f ∈ C[x]ω. A nonzero vector ψ ∈ Cn+1 is a
(normalized) eigenvector of f if ψ ∈ Sn = {x20 + · · · + x2n = 1} and
there exists λ ∈ C such that

1

ω
∇f(ψ) = λψ .

The value λ = f(ψ) is the eigenvalue of f associated with ψ.
We call eigenpoint of f any class [ψ] ∈ Pn of an eigenvector of f .

Hence, the normalized eigenvectors ψ of f are the critical points of the
“spherical” Rayleigh optimization problem

min
ψ∈Cn+1

f(ψ) subject to ψ ∈ Sn.

1. L.-H. Lim. Singular values and eigenvalues of tensors: a variational approach, in 1st IEEE International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.

2. L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 2005. 3



Example: eigenvectors of a binary cubic

Consider the binary cubic (n = 1, ω = 3)

f(x0, x1) = 2x30 − 3x20x1 + 6x0x
2
1 − x31 .

The eigenpoints of f are the points [ψ0 : ψ1] ∈ P1 such that the rank of

Af (ψ) :=

(
∇f(ψ)
ψ

)
=

(
6(ψ2

0 − ψ0ψ1 + ψ2
1) −3(ψ0 − 4ψ0ψ1 + ψ2

1)
ψ0 ψ1

)
is less than two, or equivalently

0 = detAf (ψ) = (ψ0 − 2ψ1)(ψ0 − ψ1)(ψ0 + ψ1) .

This gives the locus {[2 : 1], [1 : 1], [1 : −1]} ⊆ P1 of eigenpoints of f ,
corresponding to the normalized eigenvectors and eigenvalues

ψ = (ψ0, ψ1) ±( 2
√
5

5
,
√
5

5
) ±(

√
2

2
,
√
2

2
) ±(

√
2
2
,−

√
2

2
)

λ = f(v) ± 3
√
5

5
±
√
2 ±3

√
2
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Number of eigenpoints of a (generic) symmetric tensor, and reality

Theorem (Cartwright-Sturmfels3, Ottaviani-Oeding4)

Pick f ∈ C[x]ω and consider the locus Eig(f) ⊆ Pn of eigenpoints of f .
If f is generic, then Eig(f) is zero-dimensional, reduced, and

|Eig(f)| = (ω − 1)n+1 − 1

ω − 2
=

n∑
i=0

(ω − 1)i .

Notice that, if n = 1, then |Eig(f)| = ω for a generic f ∈ C[x0, x1]ω.

Theorem (Kozhasov5)

It is possible to construct generic homogeneous polynomials f ∈ R[x]ω
with the maximum possible finite number of real eigenpoints.

The case ω = 2 (symmetric matrices) follows from the Spectral Theorem!

3. D. Cartwright and B. Sturmfels, The number of eigenvalues of a tensor, Linear Algebra Appl., 2013.
4. L. Oeding and G. Ottaviani, Eigenvectors of tensors and algorithms for Waring decomposition, J. Symbolic

Comput., 2013.
5. K. Kozhasov, On fully real eigenconfigurations of tensors, SIAM J. Appl. Algebra Geom., 2017. 5



Bombieri-Weyl inner product

Definition

Let ⟨ , ⟩ be an inner product on Rn+1 and ω ∈ N. Fix an orthonormal
basis {e0, . . . , en} of Rn+1 with respect to ⟨ , ⟩, and define xi = e∗i ∈
(Rn+1)∗ for all i. The Bombieri-Weyl inner product associated to ⟨ , ⟩
and ω is the inner product ⟨ , ⟩BW on R[x]ω such that

√√√√(ω
α

)
xα


|α|=ω

=

{√(
ω!

α0! · · ·αn!

)
xα0
0 · · ·xαn

n

}
|α|=ω

is an orthonormal basis of R[x]ω.

We will also consider the positive definite quadratic forms q(x) := ⟨x, x⟩,
qBW(f) := ⟨f, f⟩BW, and the isotropic quadrics

Q := {[x] ∈ Pn | q(x) = 0} , QBW := {[f ] ∈ P(C[x]ω) | qBW(f) = 0} .

in particular QBW is uniquely determined by Q and ω.
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Properties of the Bombieri-Weyl inner product

Proposition

Let ⟨ , ⟩ be an inner product on Rn+1 and ω ∈ N. Let ⟨ , ⟩BW be the
Bombieri-Weyl inner product on R[x]ω associated with ⟨ , ⟩.
Given f = (fα)|α|=ω and g = (gα)|α|=ω in R[x]ω, written as

f(x) =
∑

|α|=ω

(
ω

α

)
fαx

α , g(x) =
∑

|α|=ω

(
ω

α

)
gαx

α ,

we have the identities

⟨f, g⟩BW =
∑

|α|=ω

(
ω

α

)
fαgα and qBW(f) =

∑
|α|=ω

(
ω

α

)
f2
α .
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Recap

So far we have

1. Introduced symmetric tensors aka homogeneous polynomials

2. Defined eigenvectors of symmetric tensors

3. Equipped the space of real symmetric tensors with the Bombieri-Weyl
inner product

In the following, we will use the previous tools to study the distance function
from a given symmetric tensor, constrained to a subset of symmetric tensors.

Before that, we define the distance degree of a projective variety.
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The Distance Degree of a projective variety

Let V ⊆ Pn be a projective variety, C(V) ⊆ Cn+1 its affine cone, and Q ⊆ Pn
the isotropic quadric associated with a positive-definite quadratic form q on
Rn+1. Consider the (squared) distance function from u ∈ Cn+1

d2q,u : Cn+1 → C , d2q,u(x) := q(u− x) .

Let Crit(d2q,u, C(V)) ⊆ Cn+1 be the subset of critical points of d2q,u restricted
to the nonsingular locus of C(V). The distance correspondence of (V,Q) is

DC(V,Q) :=
{
([x], [u]) | x ∈ Crit(d2q,u, C(V))

}
⊆ Pnx × Pnu .

Proposition/Definition

The projection π : DC(V,Q) → Pnu is surjective and generically finite-
to-one. The Distance Degree of (V,Q) is

DD(V,Q) := deg(π) = |Crit(d2q,u, C(V))| , u generic.

When q is the standard Euclidean quadratic form, then DD(V,Q) is known as
the Euclidean Distance Degree of V6.

6. J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels, and R. Thomas, The Euclidean distance
degree of an algebraic variety, Found. Comput. Math., 2016. 9



Eigenvectors as critical points of the Bombieri-Weyl distance function

In our case, we consider

1. the projective space P(C[x]ω) ∼= P(
n+ω
ω )−1,

2. the Bombieri-Weyl quadratic form qBW on R[x]ω,

and define the (squared) Bombieri-Weyl distance function from f ∈ C[x]ω

d2BW,f : C[x]ω → C , d2BW,f (g) := qBW(f − g) ,

which we restrict to the affine cone C(Vω) over the Veronese variety Vω, that
is the image νω(Pn) of the Veronese embedding

νω : Pn ↪→ P(C[x]ω) , νω([ψ]) := [(ψ∗)ω] .

The elements of C(Vω) are also called rank-one symmetric tensors.

Proposition

Fix f ∈ C[x]ω. A rank-one symmetric tensor λ(ψ∗)ω ∈ C(Vω) belongs
to Crit(d2BW,f , C(Vω)) if and only if ψ is a normalized eigenvector of f
with eigenvalue λ.
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Eigenvectors as critical points of the Bombieri-Weyl distance function

λ(ψ∗)ω ∈ Crit(d2BW,f , C(Vω)) means that f − λ(ψ∗)ω is orthogonal
(in the BW inner product) to the tangent space of C(Vω) at (ψ∗)ω:

(f − (ψ∗)ω) ⊥BW Tλ(ψ∗)ωC(Vω)

f : S1 → R

ψ0

ψ1

f ∈ R[x0, x1]3

f C(V3)
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X -eigenvectors of polynomials

In several applications, it is interesting to study the more general
constrained “spherical” Rayleigh optimization problem

min
ψ∈Cn+1

f(ψ) subject to ψ ∈ Sn and ψ ∈ C(X ),

for some fixed projective variety X ⊆ Pn. This leads to. . .

Definition (Salizzoni, S., Weigert7)

Consider a projective variety X ⊆ Pn and ω ∈ N.
Given f ∈ C[x]ω, then ψ ∈ Cn+1 is a (normalized) X -eigenvector of f
if ψ ∈ Crit(f,Sn ∩C(X )). The X -eigenvalue of f associated with ψ is
λ := f(ψ). Furthermore, we call X -eigenpoint of f any class [ψ] ∈ Pn
of a normalized X -eigenvector of f .

7. F. Salizzoni, L. Sodomaco, J. Weigert, Nonlinear Rayleigh quotient optimization,
arXiv:2510.17760, 2025. 12



The Rayleigh-Ritz degree of a projective variety

Definition (Salizzoni, S., Weigert)

The Rayleigh-Ritz degree of index ω of X is the cardinality

RRdegω(X ) := |{[ψ] ∈ Pn | [ψ] is an X -eigenpoint of f}|

for a generic f ∈ C[x]ω.

When X = Pn, the previous facts tell us that

RRdegω(P
n) = DD(Vω,QBW) ,

where we recall that Vω = νω(Pn). What about X ⊊ Pn?
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The Rayleigh-Ritz degree is a particular distance degree

Proposition

Let Q ⊆ Pn and QBW ⊆ P(C[x]ω) be as before. Consider a projective
variety X ⊆ Pn and its image νω(X ) ⊆ P(C[x]ω) under the Veronese
embedding. Fix f ∈ C[x]ω. Then

1. Given ψ ∈ Sn and λ ∈ C, then λ(ψ∗)ω ∈ Crit(d2BW,f , C(νω(X )))
if and only if ψ ∈ Crit(f,Sn ∩ C(X )) and λ = f(ψ).

2. Assume that f ∈ R[x]ω and let λ̃ be maximum, in absolute value,
among all X -eigenvalues of f whose corresponding X -eigenvector
ψ̃ is real. Then λ̃(ψ̃∗)ω is the closest point on νω(X R) to f .

As a consequence, we have the identity

RRdegω(X ) = DD(νω(X ),QBW)

namely, the RR degree of X is a particular distance degree of νω(X ).
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RR degrees of varieties defined implicitly

Theorem (Salizzoni, S., Weigert)

Let X ⊆ Pn be a variety of codimension c cut out by polynomials
f1, . . . , fm of degrees δ1, . . . , δm such that the first c of them form a
regular sequence. Then for all ω ∈ N

RRdegω(X ) ≤ δ1 · · · δc
∑

i0+···+ic=n−c
i0,...,ic≥0

c∏
k=1

(δk − 1)ik ·
i0∑
ℓ=0

(ω − 1)ℓ .

The equality holds if X is a generic complete intersection.

Corollary

Let X ⊆ Pn be a generic hypersurface of degree δ. Then for all ω ≥ 1

RRdegω(X ) = δ

n−1∑
i=0

(δ − 1)n−1−i
i∑
ℓ=0

(ω − 1)ℓ .
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Example: RR degree of the Fermat cubic

Consider the curve X ⊆ P2 cut out by the Fermat cubic f1 = x30 + x31 + x32,
and let q = x20 + x21 + x22 be the standard Euclidean quadratic form.
We expect to have

RRdeg2(X ) = 3

1∑
i=0

21−i(i+ 1) = 3(2 + 2) = 12 . (∗)

In fact, given a generic f ∈ C[x0, x1, x2]2, the X -eigenpoints of f are the
points of intersection between the curves X and V(h), where

h(x) := det

 x0 x1 x2
∂f1
∂x0

∂f1
∂x1

∂f1
∂x2

∂f
∂x0

∂f
∂x1

∂f
∂x2

 = 3 · det

 x0 x1 x2
x20 x21 x22
∂f
∂x0

∂f
∂x1

∂f
∂x2

 .

Therefore, if the curves defined respectively by f and h are in general position,
by Bézout’s theorem the number of X -eigenpoints of f is 3 · 4 = 12, as
predicted in (∗).
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RR degrees of varieties defined parametrically

Theorem (Salizzoni, S., Weigert)

Consider two positive integers n > m. Let g0, . . . , gn be n + 1 generic
homogeneous polynomials of degree d in m + 1 variables, and assume
that the image X of the morphism

g : Pm → Pn , [ψ] 7→ [g0(ψ) : · · · : gn(ψ)]

associated with the polynomials gi is nonsingular. Then

RRdegω(X ) =

{
(m+ 1)(2d− 1)m if ω = 2
(ωd−1)m+1−(2d−1)m+1

d(ω−2)
if ω > 2.

17



RR degrees of varieties in general position

Definition

Consider an embedded nonsingular projective variety Y ↪→ Pn of dimen-
sion m, via the line bundle L with L = c1(L).
The Generic Distance Degree of Y is

gDD(Y) =

m∑
i=0

(−1)i(2m+1−i − 1)

∫
Y
ci(Y) · Lm−i .

In particular DD(Y,Q) ≤ gDD(Y) for any isotropic quadric Q ⊆ Pn and the
equality is attained for a generic Q.

Theorem (Salizzoni, S., Weigert)

Let X ⊆ Pn be a nonsingular variety of dimension m, in general position
with respect to the fixed isotropic quadric Q ⊆ Pn. Then

RRdegω(X ) = gDD(νω(X ))− (ω − 1)gDD(νω(X ∩Q))︸ ︷︷ ︸
“defect”

.
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RR degrees of varieties in general position

Furthermore, if the embedding of X ↪→ Pn is given by a line bundle L with first
Chern class L = c1(L), then

RRdegω(X ) =
m∑
i=0

(−1)i
(
m−i∑
j=0

ωm−i−j2j
)∫

X
ci · Lm−i .

Example

RRdegω(X ) =


∫
X
(ω + 2)L− c1 if m = 1∫

X
(ω2 + 2ω + 4)L2 − (ω + 2)c1 · L+ c2 if m = 2.

One may use these formulas for any nonsingular projective variety, as long as its
Chern classes are known. For example, all nonsingular toric varieties.
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RR degree of the Segre-Veronese variety

A well-known nonsingular toric embedding is the Segre-Veronese embedding of
a product of k projective spaces Pm := Pm1 × · · · × Pmk in P(V ), where
V := ⊗ki=1C[xi]di is the space of k-homogeneous polynomials of multidegree
d = (d1, . . . , dk):

νd : Pm ↪→ P(V ) , νd([ψ1], . . . , [ψk]) := [(ψ∗
1)
d1 ⊗ · · · ⊗ (ψ∗

k)
dk ] .

The Segre-Veronese variety is SVd := νd(Pm). Its elements are partially
symmetric tensors of rank one.

We computed RRdegω(SVd) in two cases, for any (ω,m,d):

1. when SVd is in general position with respect to Q ⊆ P(V ),

2. when Q = QBW is the isotropic quadric associated to the Bombieri-Weyl
inner product in V R = ⊗ki=1R[xi]di for any k ≥ 1, for any fixed inner
products in the factors R[xi]di .
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RR degree of the Segre-Veronese variety

For example, if m = d = (1, . . . , 1), the variety SVd encodes k-dimensional
binary tensors of V ∼= (C2)⊗k of rank one. These correspond to “separable
quantum states”, in contrast to “entangled quantum states” of higher rank.

Corollary

Let m = d = (1, . . . , 1) and assume that X = SVd is in general position
with respect to Q. Then

RRdegω(X ) =

k! 2
k∑k

i=0
(−1)i

i!
(k + 1− i) if ω = 2

k!
∑k
i=0

(−1)i

i!
ωk+1−i2i−2k+1

ω−2
if ω ̸= 2.

If instead we choose Q = QBW, then RRdegω(X ) is much smaller:

Proposition

Let m = d = (1, . . . , 1) and consider X = SVd ⊆ P((C2)⊗k). Fix the
Bombieri-Weyl isotropic quadric QBW ⊆ P((C2)⊗k). Then

RRdegω(X ) = k!
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Real X -eigenvectors

Let’s recall this result mentioned before:

Theorem (Kozhasov8)

It is possible to construct generic homogeneous polynomials f ∈ R[x]ω
with the maximum possible finite number of real eigenpoints.

This property is no longer true for real X -eigenpoints in general.

For example, consider the plane conic X = V(x21 − x0x2) ⊆ P2 and the
standard Euclidean quadric Q = V(x20 + x21 + x22).

We verified that every real f ∈ C[x]2 with finitely many X -eigenpoints has
either 2 or 4 real X -eigenpoints.

In particular, f has always fewer than RRdeg2(X ) = 6 real X -eigenpoints.

8. K. Kozhasov, On fully real eigenconfigurations of tensors, SIAM J. Appl. Algebra Geom., 2017. 22



Merci!
Thank you!

https://arxiv.org/abs/2510.17760


