Nonlinear Rayleigh quotient optimization

Journée scientifique du pôle AM2I: "Introduction à la géométrie des tenseurs" IECL. Université de Lorraine

Luca Sodomaco

Max Planck Institute for Mathematics in the Sciences, Leipzig

November 3, 2025

Based on a joint work with Flavio Salizzoni and Julian Weigert

Symmetric tensors are homogeneous polynomials

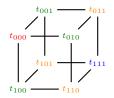
A symmetric tensor of order ω over \mathbb{C}^{n+1} is an element of the tensor space

$$\operatorname{Sym}^{\omega}(\mathbb{C}^{n+1})^* \subseteq \underbrace{(\mathbb{C}^{n+1})^* \otimes \cdots \otimes (\mathbb{C}^{n+1})^*}_{\omega \text{ times}} \cong \mathbb{C}^{(n+1)^{\times \omega}}.$$

Its elements are ω -dimensional tensors $T=(t_{i_1\cdots i_\omega})$ such that

$$t_{i_{\sigma(1)}\cdots i_{\sigma(\omega)}}=t_{i_1\cdots i_{\omega}} \text{ for all permutations } \sigma\in S_{\omega}.$$

For example, a tensor $T\in \mathrm{Sym}^3(\mathbb{C}^2)^*\subseteq (\mathbb{C}^2)^*\otimes (\mathbb{C}^2)^*\otimes (\mathbb{C}^2)^*$ is a cube



with entries t_{000} , $t_{100} = t_{010} = t_{001}$, $t_{110} = t_{101} = t_{011}$, t_{111} .

Symmetric tensors are homogeneous polynomials

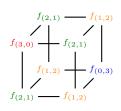
We identify $\operatorname{Sym}^{\omega}(\mathbb{C}^{n+1})^*$ with the space $\mathbb{C}[x]_{\omega} := \mathbb{C}[x_0, \dots, x_n]_{\omega}$ of homogeneous polynomials of degree ω in n+1 variables. We write

$$f(x_0, \dots, x_n) = \sum_{|\alpha| = \omega} {\omega \choose \alpha} f_{\alpha} x^{\alpha} \in \mathbb{C}[x]_{\omega},$$

where $\binom{\omega}{\alpha} = \frac{\omega!}{\alpha_0! \cdots \alpha_n!}$. In particular, we identify f with $(f_\alpha)_{|\alpha| = \omega} \in \mathbb{C}^{\binom{n+\omega}{\omega}}$. For example, we associate the binary cubic in $\mathbb{C}[x_0, x_1]_3 = \operatorname{Sym}^3(\mathbb{C}^2)^*$

$$f(x_0, x_1) = f_{(3,0)} x_0^3 + 3 f_{(2,1)} x_0^2 x_1 + 3 f_{(1,2)} x_0 x_1^2 + f_{(0,3)} x_1^3$$

to the vector $(f_{(3,0)},f_{(2,1)},f_{(1,2)},f_{(0,3)})\in\mathbb{C}^4.$



Eigenvectors of polynomials

Definition (Lim¹, Qi²)

Consider $\omega\in\mathbb{N}$ and $f\in\mathbb{C}[x]_{\omega}$. A nonzero vector $\psi\in\mathbb{C}^{n+1}$ is a (normalized) eigenvector of f if $\psi\in\mathcal{S}^n=\{x_0^2+\cdots+x_n^2=1\}$ and there exists $\lambda\in\mathbb{C}$ such that

$$\frac{1}{\omega}\nabla f(\psi) = \lambda\,\psi\,.$$

The value $\lambda = f(\psi)$ is the **eigenvalue of** f associated with ψ . We call **eigenpoint** of f any class $[\psi] \in \mathbb{P}^n$ of an eigenvector of f.

Hence, the normalized eigenvectors ψ of f are the critical points of the "spherical" Rayleigh optimization problem

$$\min_{\psi \in \mathbb{C}^{n+1}} f(\psi) \quad \text{subject to } \psi \in \mathcal{S}^n.$$

2. L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 2005.

L.-H. Lim. Singular values and eigenvalues of tensors: a variational approach, in 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.

Example: eigenvectors of a binary cubic

Consider the binary cubic (n = 1, $\omega = 3$)

$$f(x_0, x_1) = 2x_0^3 - 3x_0^2x_1 + 6x_0x_1^2 - x_1^3.$$

The eigenpoints of f are the points $[\psi_0:\psi_1]\in\mathbb{P}^1$ such that the rank of

$$A_f(\psi) := \begin{pmatrix} \nabla f(\psi) \\ \psi \end{pmatrix} = \begin{pmatrix} 6(\psi_0^2 - \psi_0 \psi_1 + \psi_1^2) & -3(\psi_0 - 4\psi_0 \psi_1 + \psi_1^2) \\ \psi_0 & \psi_1 \end{pmatrix}$$

is less than two, or equivalently

$$0 = \det A_f(\psi) = (\psi_0 - 2\psi_1)(\psi_0 - \psi_1)(\psi_0 + \psi_1).$$

This gives the locus $\{[2:1], [1:1], [1:-1]\} \subseteq \mathbb{P}^1$ of eigenpoints of f, corresponding to the normalized eigenvectors and eigenvalues

$$\frac{\psi = (\psi_0, \psi_1) \quad \left| \begin{array}{c|c} \pm (\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}) & \pm (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) & \pm (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}) \\ \lambda = f(v) \quad \left| \begin{array}{c|c} \pm \frac{3\sqrt{5}}{5} & \pm \sqrt{2} & \pm 3\sqrt{2} \end{array} \right|$$

Δ

Number of eigenpoints of a (generic) symmetric tensor, and reality

Theorem (Cartwright-Sturmfels³, Ottaviani-Oeding⁴)

Pick $f\in\mathbb{C}[x]_{\omega}$ and consider the locus $\mathrm{Eig}(f)\subseteq\mathbb{P}^n$ of eigenpoints of f. If f is generic, then $\mathrm{Eig}(f)$ is zero-dimensional, reduced, and

$$|\operatorname{Eig}(f)| = \frac{(\omega - 1)^{n+1} - 1}{\omega - 2} = \sum_{i=0}^{n} (\omega - 1)^{i}.$$

Notice that, if n=1, then $|\operatorname{Eig}(f)|=\omega$ for a generic $f\in\mathbb{C}[x_0,x_1]_\omega$.

Theorem (Kozhasov⁵)

It is possible to construct generic homogeneous polynomials $f\in\mathbb{R}[x]_\omega$ with the maximum possible finite number of real eigenpoints.

The case $\omega = 2$ (symmetric matrices) follows from the Spectral Theorem!

^{3.} D. Cartwright and B. Sturmfels, The number of eigenvalues of a tensor, Linear Algebra Appl., 2013.

L. Oeding and G. Ottaviani, Eigenvectors of tensors and algorithms for Waring decomposition, J. Symbolic Comput., 2013.

^{5.} K. Kozhasov, On fully real eigenconfigurations of tensors, SIAM J. Appl. Algebra Geom., 2017.

Definition

Let $\langle \, , \rangle$ be an inner product on \mathbb{R}^{n+1} and $\omega \in \mathbb{N}$. Fix an orthonormal basis $\{e_0,\ldots,e_n\}$ of \mathbb{R}^{n+1} with respect to $\langle \, , \rangle$, and define $x_i=e_i^* \in (\mathbb{R}^{n+1})^*$ for all i. The Bombieri-Weyl inner product associated to $\langle \, , \rangle$ and ω is the inner product $\langle \, , \rangle_{\mathrm{BW}}$ on $\mathbb{R}[x]_\omega$ such that

$$\left\{ \sqrt{\binom{\omega}{\alpha}} \, x^{\alpha} \right\}_{|\alpha| = \omega} = \left\{ \sqrt{\left(\frac{\omega!}{\alpha_0! \cdots \alpha_n!} \right)} \, x_0^{\alpha_0} \cdots x_n^{\alpha_n} \right\}_{|\alpha| = \omega}$$

is an orthonormal basis of $\mathbb{R}[x]_{\omega}$.

We will also consider the positive definite quadratic forms $q(x) \coloneqq \langle x, x \rangle$, $q_{\mathrm{BW}}(f) \coloneqq \langle f, f \rangle_{\mathrm{BW}}$, and the isotropic quadrics

$$\mathcal{Q} \coloneqq \{[x] \in \mathbb{P}^n \mid q(x) = 0\} \ , \quad \mathcal{Q}_{\mathrm{BW}} \coloneqq \{[f] \in \mathbb{P}(\mathbb{C}[x]_\omega) \mid q_{\mathrm{BW}}(f) = 0\} \ .$$

in particular $\mathcal{Q}_{\mathrm{BW}}$ is uniquely determined by \mathcal{Q} and $\omega.$

Properties of the Bombieri-Weyl inner product

Proposition

Let $\langle \, , \rangle$ be an inner product on \mathbb{R}^{n+1} and $\omega \in \mathbb{N}$. Let $\langle \, , \rangle_{\mathrm{BW}}$ be the Bombieri-Weyl inner product on $\mathbb{R}[x]_{\omega}$ associated with $\langle \, , \rangle$.

Given $f=(f_{\alpha})_{|\alpha|=\omega}$ and $g=(g_{\alpha})_{|\alpha|=\omega}$ in $\mathbb{R}[x]_{\omega}$, written as

$$f(x) = \sum_{|\alpha| = \omega} {\omega \choose \alpha} f_{\alpha} x^{\alpha}, \quad g(x) = \sum_{|\alpha| = \omega} {\omega \choose \alpha} g_{\alpha} x^{\alpha},$$

we have the identities

$$\langle f,g\rangle_{\mathrm{BW}} = \sum_{|\alpha|=\omega} \binom{\omega}{\alpha} f_{\alpha} g_{\alpha} \quad \text{and} \quad q_{\mathrm{BW}}(f) = \sum_{|\alpha|=\omega} \binom{\omega}{\alpha} f_{\alpha}^2 \,.$$

So far we have

- 1. Introduced symmetric tensors aka homogeneous polynomials
- 2. Defined eigenvectors of symmetric tensors
- 3. Equipped the space of real symmetric tensors with the Bombieri-Weyl inner product

In the following, we will use the previous tools to study the distance function from a given symmetric tensor, constrained to a subset of symmetric tensors.

Before that, we define the distance degree of a projective variety.

The Distance Degree of a projective variety

Let $\mathcal{V}\subseteq\mathbb{P}^n$ be a projective variety, $C(\mathcal{V})\subseteq\mathbb{C}^{n+1}$ its affine cone, and $\mathcal{Q}\subseteq\mathbb{P}^n$ the isotropic quadric associated with a positive-definite quadratic form q on \mathbb{R}^{n+1} . Consider the (squared) distance function from $u\in\mathbb{C}^{n+1}$

$$d_{q,u}^2 \colon \mathbb{C}^{n+1} \to \mathbb{C}, \quad d_{q,u}^2(x) := q(u-x).$$

Let $\operatorname{Crit}(d_{q,u}^2,C(\mathcal{V}))\subseteq\mathbb{C}^{n+1}$ be the subset of **critical points of** $d_{q,u}^2$ restricted to the nonsingular locus of $C(\mathcal{V})$. The **distance correspondence** of $(\mathcal{V},\mathcal{Q})$ is

$$\mathrm{DC}(\mathcal{V},\mathcal{Q}) \coloneqq \left\{ ([x],[u]) \mid x \in \mathrm{Crit}(d_{q,u}^2,C(\mathcal{V})) \right\} \subseteq \mathbb{P}_x^n \times \mathbb{P}_u^n \, .$$

Proposition/Definition

The projection $\pi\colon \mathrm{DC}(\mathcal{V},\mathcal{Q})\to \mathbb{P}^n_u$ is surjective and generically finite-to-one. The **Distance Degree** of $(\mathcal{V},\mathcal{Q})$ is

$$DD(\mathcal{V}, \mathcal{Q}) := \deg(\pi) = |Crit(d_{a,u}^2, C(\mathcal{V}))|, \ u \text{ generic.}$$

When q is the standard Euclidean quadratic form, then $\mathrm{DD}(\mathcal{V},\mathcal{Q})$ is known as the Euclidean Distance Degree of \mathcal{V}^6 .

6. J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels, and R. Thomas, *The Euclidean distance degree of an algebraic variety*, Found. Comput. Math., 2016.

Eigenvectors as critical points of the Bombieri-Weyl distance function

In our case, we consider

- 1. the projective space $\mathbb{P}(\mathbb{C}[x]_{\omega}) \cong \mathbb{P}^{\binom{n+\omega}{\omega}-1}$,
- 2. the Bombieri-Weyl quadratic form q_{BW} on $\mathbb{R}[x]_{\omega}$,

and define the (squared) Bombieri-Weyl distance function from $f\in\mathbb{C}[x]_\omega$

$$d^2_{\mathrm{BW},f} \colon \mathbb{C}[x]_\omega \to \mathbb{C}, \quad d^2_{\mathrm{BW},f}(g) \coloneqq q_{\mathrm{BW}}(f-g),$$

which we restrict to the affine cone $C(\mathcal{V}_{\omega})$ over the **Veronese variety** \mathcal{V}_{ω} , that is the image $\nu_{\omega}(\mathbb{P}^n)$ of the **Veronese embedding**

$$\nu_{\omega} \colon \mathbb{P}^n \hookrightarrow \mathbb{P}(\mathbb{C}[x]_{\omega}), \quad \nu_{\omega}([\psi]) \coloneqq [(\psi^*)^{\omega}].$$

The elements of $C(\mathcal{V}_{\omega})$ are also called rank-one symmetric tensors.

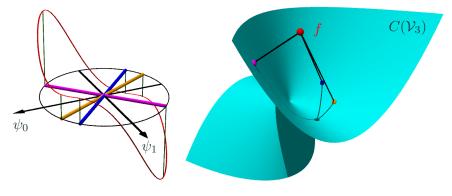
Proposition

Fix $f\in\mathbb{C}[x]_{\omega}$. A rank-one symmetric tensor $\lambda(\psi^*)^{\omega}\in C(\mathcal{V}_{\omega})$ belongs to $\mathrm{Crit}(d^2_{\mathrm{BW},f},C(\mathcal{V}_{\omega}))$ if and only if ψ is a normalized eigenvector of f with eigenvalue λ .

Eigenvectors as critical points of the Bombieri-Weyl distance function

 $\lambda(\psi^*)^\omega\in \mathrm{Crit}(d^2_{\mathrm{BW},f},C(\mathcal{V}_\omega)) \text{ means that } f-\lambda(\psi^*)^\omega \text{ is orthogonal } (\text{in the BW inner product}) \text{ to the tangent space of } C(\mathcal{V}_\omega) \text{ at } (\psi^*)^\omega\colon$

$$(f - (\psi^*)^{\omega}) \perp_{\mathrm{BW}} T_{\lambda(\psi^*)^{\omega}} C(\mathcal{V}_{\omega})$$



 $f \colon S^1 \to \mathbb{R}$

 $f \in \mathbb{R}[x_0, x_1]_3$

\mathcal{X} -eigenvectors of polynomials

In several applications, it is interesting to study the more general constrained "spherical" Rayleigh optimization problem

$$\min_{\psi \in \mathbb{C}^{n+1}} f(\psi) \quad \text{subject to } \psi \in \mathcal{S}^n \text{ and } \psi \in C(\mathcal{X})\text{,}$$

for some fixed projective variety $\mathcal{X} \subseteq \mathbb{P}^n$. This leads to...

Definition (Salizzoni, S., Weigert⁷)

Consider a projective variety $\mathcal{X}\subseteq\mathbb{P}^n$ and $\omega\in\mathbb{N}$. Given $f\in\mathbb{C}[x]_\omega$, then $\psi\in\mathbb{C}^{n+1}$ is a **(normalized)** \mathcal{X} -eigenvector of f if $\psi\in\mathrm{Crit}(f,\mathcal{S}^n\cap C(\mathcal{X}))$. The \mathcal{X} -eigenvalue of f associated with ψ is $\lambda:=f(\psi)$. Furthermore, we call \mathcal{X} -eigenpoint of f any class $[\psi]\in\mathbb{P}^n$ of a normalized \mathcal{X} -eigenvector of f.

F. Salizzoni, L. Sodomaco, J. Weigert, Nonlinear Rayleigh quotient optimization, arXiv:2510.17760, 2025.

The Rayleigh-Ritz degree of a projective variety

Definition (Salizzoni, S., Weigert)

The Rayleigh-Ritz degree of index ω of $\mathcal X$ is the cardinality

$$\mathrm{RRdeg}_{\omega}(\mathcal{X})\coloneqq |\{[\psi]\in\mathbb{P}^n\mid [\psi] \text{ is an } \mathcal{X}\text{-eigenpoint of } f\}|$$

for a generic $f \in \mathbb{C}[x]_{\omega}$.

When $\mathcal{X} = \mathbb{P}^n$, the previous facts tell us that

$$RRdeg_{\omega}(\mathbb{P}^n) = DD(\mathcal{V}_{\omega}, \mathcal{Q}_{BW}),$$

where we recall that $\mathcal{V}_{\omega} = \nu_{\omega}(\mathbb{P}^n)$. What about $\mathcal{X} \subsetneq \mathbb{P}^n$?

The Rayleigh-Ritz degree is a particular distance degree

Proposition

Let $\mathcal{Q}\subseteq\mathbb{P}^n$ and $\mathcal{Q}_{\mathrm{BW}}\subseteq\mathbb{P}(\mathbb{C}[x]_\omega)$ be as before. Consider a projective variety $\mathcal{X}\subseteq\mathbb{P}^n$ and its image $\nu_\omega(\mathcal{X})\subseteq\mathbb{P}(\mathbb{C}[x]_\omega)$ under the Veronese embedding. Fix $f\in\mathbb{C}[x]_\omega$. Then

- 1. Given $\psi \in \mathcal{S}^n$ and $\lambda \in \mathbb{C}$, then $\lambda(\psi^*)^\omega \in \operatorname{Crit}(d^2_{\mathrm{BW},f},C(\nu_\omega(\mathcal{X})))$ if and only if $\psi \in \operatorname{Crit}(f,\mathcal{S}^n \cap C(\mathcal{X}))$ and $\lambda = f(\psi)$.
- 2. Assume that $f \in \mathbb{R}[x]_{\omega}$ and let $\tilde{\lambda}$ be maximum, in absolute value, among all \mathcal{X} -eigenvalues of f whose corresponding \mathcal{X} -eigenvector $\tilde{\psi}$ is real. Then $\tilde{\lambda}(\tilde{\psi}^*)^{\omega}$ is the closest point on $\nu_{\omega}(\mathcal{X}^{\mathbb{R}})$ to f.

As a consequence, we have the identity

$$RRdeg_{\omega}(\mathcal{X}) = DD(\nu_{\omega}(\mathcal{X}), \mathcal{Q}_{BW})$$

namely, the RR degree of \mathcal{X} is a particular distance degree of $\nu_{\omega}(\mathcal{X})$.

RR degrees of varieties defined implicitly

Theorem (Salizzoni, S., Weigert)

Let $\mathcal{X}\subseteq\mathbb{P}^n$ be a variety of codimension c cut out by polynomials f_1,\ldots,f_m of degrees δ_1,\ldots,δ_m such that the first c of them form a regular sequence. Then for all $\omega\in\mathbb{N}$

$$\operatorname{RRdeg}_{\omega}(\mathcal{X}) \leq \delta_1 \cdots \delta_c \sum_{\substack{i_0 + \cdots + i_c = n - c \\ i_0, \dots, i_c \geq 0}} \prod_{k=1}^c (\delta_k - 1)^{i_k} \cdot \sum_{\ell=0}^{i_0} (\omega - 1)^{\ell}.$$

The equality holds if ${\mathcal X}$ is a generic complete intersection.

Corollary

Let $\mathcal{X}\subseteq\mathbb{P}^n$ be a generic hypersurface of degree $\delta.$ Then for all $\omega\geq 1$

$$RRdeg_{\omega}(\mathcal{X}) = \delta \sum_{i=0}^{n-1} (\delta - 1)^{n-1-i} \sum_{\ell=0}^{i} (\omega - 1)^{\ell}$$
.

Example: RR degree of the Fermat cubic

Consider the curve $\mathcal{X}\subseteq\mathbb{P}^2$ cut out by the Fermat cubic $f_1=x_0^3+x_1^3+x_2^3$, and let $q=x_0^2+x_1^2+x_2^2$ be the standard Euclidean quadratic form. We expect to have

$$RRdeg_2(\mathcal{X}) = 3\sum_{i=0}^{1} 2^{1-i}(i+1) = 3(2+2) = 12.$$
 (*)

In fact, given a generic $f\in\mathbb{C}[x_0,x_1,x_2]_2$, the \mathcal{X} -eigenpoints of f are the points of intersection between the curves \mathcal{X} and $\mathbb{V}(h)$, where

$$h(x) := \det \begin{pmatrix} x_0 & x_1 & x_2 \\ \frac{\partial f_1}{\partial x_0} & \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f}{\partial x_0} & \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{pmatrix} = 3 \cdot \det \begin{pmatrix} x_0 & x_1 & x_2 \\ x_0^2 & x_1^2 & x_2^2 \\ \frac{\partial f}{\partial x_0} & \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{pmatrix}.$$

Therefore, if the curves defined respectively by f and h are in general position, by Bézout's theorem the number of \mathcal{X} -eigenpoints of f is $3\cdot 4=12$, as predicted in (*).

RR degrees of varieties defined parametrically

Theorem (Salizzoni, S., Weigert)

Consider two positive integers n>m. Let g_0,\ldots,g_n be n+1 generic homogeneous polynomials of degree d in m+1 variables, and assume that the image $\mathcal X$ of the morphism

$$g: \mathbb{P}^m \to \mathbb{P}^n$$
, $[\psi] \mapsto [g_0(\psi): \cdots : g_n(\psi)]$

associated with the polynomials g_i is nonsingular. Then

$$\mathrm{RRdeg}_{\omega}(\mathcal{X}) = \begin{cases} (m+1)(2d-1)^m & \text{if } \omega = 2\\ \frac{(\omega d-1)^{m+1}-(2d-1)^{m+1}}{d(\omega-2)} & \text{if } \omega > 2. \end{cases}$$

Definition

Consider an embedded nonsingular projective variety $\mathcal{Y} \hookrightarrow \mathbb{P}^n$ of dimension m, via the line bundle \mathcal{L} with $L = c_1(\mathcal{L})$.

The Generic Distance Degree of $\mathcal Y$ is

$$gDD(\mathcal{Y}) = \sum_{i=0}^{m} (-1)^{i} (2^{m+1-i} - 1) \int_{\mathcal{Y}} c_{i}(\mathcal{Y}) \cdot L^{m-i}.$$

In particular $\mathrm{DD}(\mathcal{Y},\mathcal{Q}) \leq \mathrm{gDD}(\mathcal{Y})$ for any isotropic quadric $\mathcal{Q} \subseteq \mathbb{P}^n$ and the equality is attained for a generic \mathcal{Q} .

Theorem (Salizzoni, S., Weigert)

Let $\mathcal{X}\subseteq\mathbb{P}^n$ be a nonsingular variety of dimension m, in general position with respect to the fixed isotropic quadric $\mathcal{Q}\subseteq\mathbb{P}^n$. Then

$$RRdeg_{\omega}(\mathcal{X}) = gDD(\nu_{\omega}(\mathcal{X})) - \underbrace{(\omega - 1)gDD(\nu_{\omega}(\mathcal{X} \cap \mathcal{Q}))}_{\text{"defect"}}.$$

RR degrees of varieties in general position

Furthermore, if the embedding of $\mathcal{X} \hookrightarrow \mathbb{P}^n$ is given by a line bundle \mathcal{L} with first Chern class $L = c_1(\mathcal{L})$, then

$$RRdeg_{\omega}(\mathcal{X}) = \sum_{i=0}^{m} (-1)^{i} \left(\sum_{j=0}^{m-i} \omega^{m-i-j} 2^{j} \right) \int_{\mathcal{X}} c_{i} \cdot L^{m-i}.$$

Example

$$\operatorname{RRdeg}_{\omega}(\mathcal{X}) = \begin{cases} \int_X (\omega+2)L - c_1 & \text{if } m = 1\\ \int_X (\omega^2 + 2\omega + 4)L^2 - (\omega+2)c_1 \cdot L + c_2 & \text{if } m = 2. \end{cases}$$

One may use these formulas for any nonsingular projective variety, as long as its Chern classes are known. For example, all nonsingular toric varieties.

A well-known nonsingular toric embedding is the **Segre-Veronese embedding** of a product of k projective spaces $\mathbb{P}^m := \mathbb{P}^{m_1} \times \cdots \times \mathbb{P}^{m_k}$ in $\mathbb{P}(V)$, where $V := \otimes_{i=1}^k \mathbb{C}[x_i]_{d_i}$ is the space of k-homogeneous polynomials of multidegree $d = (d_1, \ldots, d_k)$:

$$\nu_{\boldsymbol{d}} \colon \mathbb{P}^{\boldsymbol{m}} \hookrightarrow \mathbb{P}(V) \,, \quad \nu_{\boldsymbol{d}}([\psi_1], \dots, [\psi_k]) \coloneqq [(\psi_1^*)^{d_1} \otimes \dots \otimes (\psi_k^*)^{d_k}] \,.$$

The Segre-Veronese variety is $\mathcal{SV}_d := \nu_d(\mathbb{P}^m)$. Its elements are partially symmetric tensors of rank one.

We computed $RRdeg_{\omega}(\mathcal{SV}_d)$ in two cases, for any (ω, m, d) :

- 1. when \mathcal{SV}_d is in general position with respect to $\mathcal{Q} \subseteq \mathbb{P}(V)$,
- 2. when $\mathcal{Q}=\mathcal{Q}_{\mathrm{BW}}$ is the isotropic quadric associated to the Bombieri-Weyl inner product in $V^{\mathbb{R}}=\otimes_{i=1}^{k}\mathbb{R}[x_{i}]_{d_{i}}$ for any $k\geq 1$, for any fixed inner products in the factors $\mathbb{R}[x_{i}]_{d_{i}}$.

RR degree of the Segre-Veronese variety

For example, if $m=d=(1,\ldots,1)$, the variety \mathcal{SV}_d encodes k-dimensional binary tensors of $V\cong (\mathbb{C}^2)^{\otimes k}$ of rank one. These correspond to "separable quantum states", in contrast to "entangled quantum states" of higher rank.

Corollary

Let ${m m}={m d}=(1,\dots,1)$ and assume that ${\cal X}={\cal SV}_{m d}$ is in general position with respect to ${\cal Q}.$ Then

$$RRdeg_{\omega}(\mathcal{X}) = \begin{cases} k! \, 2^k \sum_{i=0}^k \frac{(-1)^i}{i!} (k+1-i) & \text{if } \omega = 2\\ k! \sum_{i=0}^k \frac{(-1)^i}{i!} \frac{\omega^{k+1-i} 2^i - 2^{k+1}}{\omega - 2} & \text{if } \omega \neq 2. \end{cases}$$

If instead we choose $\mathcal{Q} = \mathcal{Q}_{\mathrm{BW}}$, then $\mathrm{RRdeg}_{\omega}(\mathcal{X})$ is much smaller:

Proposition

Let $\boldsymbol{m}=\boldsymbol{d}=(1,\ldots,1)$ and consider $\mathcal{X}=\mathcal{SV}_{\boldsymbol{d}}\subseteq \mathbb{P}((\mathbb{C}^2)^{\otimes k})$. Fix the Bombieri-Weyl isotropic quadric $\mathcal{Q}_{\scriptscriptstyle \mathrm{BW}}\subseteq \mathbb{P}((\mathbb{C}^2)^{\otimes k})$. Then

$$RRdeg_{\omega}(\mathcal{X}) = k!$$

Real X-eigenvectors

Let's recall this result mentioned before:

Theorem (Kozhasov⁸)

It is possible to construct generic homogeneous polynomials $f\in\mathbb{R}[x]_\omega$ with the maximum possible finite number of real eigenpoints.

This property is no longer true for real \mathcal{X} -eigenpoints in general.

For example, consider the plane conic $\mathcal{X} = \mathbb{V}(x_1^2 - x_0 x_2) \subseteq \mathbb{P}^2$ and the standard Euclidean quadric $\mathcal{Q} = \mathbb{V}(x_0^2 + x_1^2 + x_2^2)$.

We verified that **every** real $f \in \mathbb{C}[x]_2$ with finitely many \mathcal{X} -eigenpoints has either 2 or 4 real \mathcal{X} -eigenpoints.

In particular, f has always fewer than $RRdeg_2(\mathcal{X}) = 6$ real \mathcal{X} -eigenpoints.

Merci! Thank you!

https://arxiv.org/abs/2510.17760