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A geometric observation

Let X ⊂ PN be an irreducible non-degenerate projective variety.

Consider r general points p1, . . . , pr of X . Then, we expect

dim〈Tp1X , . . . ,TprX 〉 to be min{N, r(dimX + 1)− 1} = expdim.

When the above expdim is not reached, X is quite special!

2/27



Terracini’s (first) Lemma

The r-secant variety σr (X ) of X ⊂ PN is

σr (X ) :=
⋃

p1,...,pr∈X
〈p1, . . . , pr 〉 ⊂ PN .

X = σ1(X ) ⊂ σ2(X ) ⊂ · · · ⊂ σgr (X ) ∼= PN

Lemma (Terracini)

For a general T ∈ 〈p1, . . . , pr 〉 where pi ∈ X ⊂ PN are general,

dimTTσr (X ) = dim〈Tp1X , . . . ,TprX 〉.

X is r -defective when

dimσr (X ) < min{N, r(dimX + 1)− 1}.
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A bit of context on secant varieties
to understand the importance of Terracini’s Lemma

Given X ⊂ PN ,
the X -rank of a point T ∈ PN is the minimum integer r such that

T ∈ 〈p1, . . . , pr 〉, for distinct pi ∈ X .

The points of X have X -rank 1.

σr (X ) :=
⋃

p1,...,pr∈X
〈p1, . . . , pr 〉,

the generic element of σr (X ) has X -rank r .

Knowing the dimension of σr (X ) is useful to understand the
generic X -rank.
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Why am I telling you all this?
In some special cases, X is actually a tensor variety:

X =



k-factor Segre {v1 ⊗ · · · ⊗ vk} ⊂ PV1 ⊗ · · · ⊗ Vk

d-Veronese {v⊗d} ⊂ PSymdV

Segre-Veronese {v⊗d1
1 ⊗ · · · ⊗ v⊗dkk } ⊂ P

⊗k
i=1 Sym

diVi

Grassmannians {v1 ∧ · · · ∧ wk} ⊂ P ∧k V
· · ·

and the X -rank is actually a tensor rank

min r such that T =



∑r
i=1 vi ,1 ⊗ · · · ⊗ vi ,k rank∑r
i=1 v

⊗d
i Waring or sym rank∑r

i=1 v
⊗d1
i ,1 ⊗ · · · ⊗ v⊗dki ,k partially sym rank∑r

i=1 vi ,1 ∧ · · · ∧ wi ,k skew-sym rank

· · ·
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Let’s go back to our geometric
observation...

When X ⊂ PN is not r -defective, for general points p1, . . . , pr we
have dim〈Tp1X , . . . ,TprX 〉 = min{N, r(dimX + 1)− 1}.

However, there may exist special points p1, . . . , pr ∈ Xsm for
which

dim〈Tp1X , . . . ,TprX 〉 < min{N, r(dimX + 1)− 1}.

We are interested in these points.
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...and let’s make an example!

Let dimV = n + 1, X = νd(P(V )) = {[vd ], v ∈ V }, so the image

of the d Veronese map νd : Pn → P(n+d
d )−1 such that [v ] 7→ [vd ].

In general, T̂vdX = {vd−1w ,w ∈ V }.

Fix d = 3, dimV = 3.

• For p1 = e3
0 , a basis of T̂p1X is e3

0 , e2
0e1, e2

0e2.

• For p2 = e3
1 , a basis of T̂p2X is e2

1e0, e3
1 , e2

1e2.

• For p3 = (e0 + e1)3, a basis of T̂p3X is
(e0 + e1)3, (e0 + e1)2(e0 − e1), (e0 + e1)2e2.

But a basis of 〈T̂p1X , T̂p2X , T̂p3X 〉 is
e3

0 , e2
0e1, e2

0e2, e2
1e0, e3

1e1, e2
1e2, (e0 + e1)2e2.
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How to interpret the problem
Take X = νd(P(V )), p = vd , so T̂pX = {vd−1w ,w ∈ V }.
• Ip contains all hypersurfaces passing through vd

• (Ip)2 contains all hypersurfaces singular at vd

• the 0-dim scheme defined by (Ip)2 is the double point 2p

Then (Lasker)

T̂pX
∨ = (I 2

p )d

Ex: p = ed0 , Ip = (x1, . . . , xn), I 2
p = (x2

1 , x1x2, . . . , x
2
n ),

(I 2
p )d is given by all degree d monomials but xd0 , x

d−1
0 x1, . . . , x

d−1
0 xn

while
T̂pX = 〈ed0 , ed−1

0 e1, . . . , e
d−1
0 en〉.
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How to interpret the problem II

If we take r -points A = {p1, . . . , pr} ⊂ Xsm and call

• 2A = {2p1, . . . , 2pr}, I2A = ∩i (Ipi )2

• 〈2A〉 = 〈Tp1X , . . . ,TprX 〉.
Then

codim〈2A〉 = h0(I2A,Pn(d))

and

understanding dim〈2A〉 is now
an interpolation problem.

This is true for X = tensor variety.
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Terracini Locus
[BBS] and [BC]

Let X ⊂ PN be a non-degenerate irreducible variety embedded via
an ample line bundle. For a set A = {p1, . . . , pr} ⊂ Xsm of r
points let

〈2A〉 = 〈Tp1X , . . . ,TprX 〉.

The r-Terracini locus Tr (X ) of X is

Tr (X ) = {A ⊂ Xsm | 〈2A〉 6= PN and dim〈2A〉 < r(dimX + 1)− 1}
= {A ⊂ Xsm | h0(I2A(1)) · h1(I2A(1)) 6= 0}.

It is not necessary to consider all values of r .

• T1(X ) = ∅,
• If A ∈ Tr (X ) then A ∪ {p} ∈ Tr+1(X ) for all p ∈ Xsm.

10/27



Terracini Locus
[BBS] and [BC]

Let X ⊂ PN be a non-degenerate irreducible variety embedded via
an ample line bundle. For a set A = {p1, . . . , pr} ⊂ Xsm of r
points let

〈2A〉 = 〈Tp1X , . . . ,TprX 〉.

The r-Terracini locus Tr (X ) of X is

Tr (X ) = {A ⊂ Xsm | 〈2A〉 6= PN and dim〈2A〉 < r(dimX + 1)− 1}
= {A ⊂ Xsm | h0(I2A(1)) · h1(I2A(1)) 6= 0}.

It is not necessary to consider all values of r .

• T1(X ) = ∅,
• If A ∈ Tr (X ) then A ∪ {p} ∈ Tr+1(X ) for all p ∈ Xsm.

10/27



Terracini Locus
[BBS] and [BC]

Let X ⊂ PN be a non-degenerate irreducible variety embedded via
an ample line bundle. For a set A = {p1, . . . , pr} ⊂ Xsm of r
points let

〈2A〉 = 〈Tp1X , . . . ,TprX 〉.

The r-Terracini locus Tr (X ) of X is

Tr (X ) = {A ⊂ Xsm | 〈2A〉 6= PN and dim〈2A〉 < r(dimX + 1)− 1}
= {A ⊂ Xsm | h0(I2A(1)) · h1(I2A(1)) 6= 0}.

It is not necessary to consider all values of r .

• T1(X ) = ∅,
• If A ∈ Tr (X ) then A ∪ {p} ∈ Tr+1(X ) for all p ∈ Xsm.

10/27



Geometric interpretation

The abstract r-th secant variety of X ⊂ PN is

Absr (X ) := {(T ; (p1, . . . , pr )) ∈ PN × X r : T ∈ 〈p1, . . . , pr 〉}.

The first projection

Tr : Absr (X )→
⋃

p1,...,pr∈X
〈p1, . . . , pr 〉

is the r -th Terracini map.

The r-th Terracini locus measures the degeneracy of the
differential of this map.
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Why is this relevant?
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1) The condition number of a tensor
decomposition

Keep in mind Nick’s talk

Recall the Terracini map Tr : Absr (X )→ σ0
r (X ).

The condition number of p1, . . . , pr is

κ(p1, . . . , pr ) :=

{
‖(dTr ,(p1,...,pr ))

−1‖2 if dTr is invertible at p1, . . . , pr ,

∞ otherwise.

• Call T−1
r ,(p1,...,pr ) the local inverse of Tr at p1, . . . , pr .

• If the differential dTr of Tr at p1, . . . , pr is invertible then a
local inverse exists.

13/27



Terracini loci and condition numbers

κ(p1, . . . , pr ) :=

{
‖(dTr ,(p1,...,pr ))

−1‖2 if dTr is inv. at p1, . . . , pr

∞ otherwise.

Tuples of the Terracini loci correspond to tuples with an
infinite condition number

The Terracini locus embodies tuples that have a bad behaviour and
we want to avoid them wen performing a tensor decomposition!
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2) Identifiability

A point T ∈ PN of X -rank r is identifiable if

T =
r∑

i=1

pi , where pi ∈ X

in a unique way.

There are many results for identifiability of generic tensors.
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Terracini loci and the identifiability quest

Identifiability for specific tensors:
• Completely solved:

• Binary forms (Sylvester)
• Identifiability of non-structured rank-3 tensors [BBS]

• Many results on forms of low degree (Chiantini et al.)

• Criterion: Kruskal, many generalizations of Kruskal’s
([COV],[LP],...)

However, given T ∈ PN with

T =
r∑

i=1

pi ,

if we want even a slight chance that T is identifiable then
p1, . . . , pr must lie outside the Terracini locus.
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Selected results on Terracini loci

Many people have worked on Terracini loci recently

• It has been introduced in [BC] and [BBS].

• The work [LM] characterizes emptyness in the case of toric
varieties.

• In [GSTT] we characterize the first and second non-empty
Terracini locus in the case of Veronese and Segre-Veronese
varieties.

There is still much work to do!
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What about the second Terracini’s
Lemma?

Lemma (Second Terracini’s Lemma)

Let p1, . . . , pr ∈ X be general points and assume that X is
r -defective. Then, there is a positive dimensional variety C ⊆ X
through p1, . . . , pr such that

if p ∈ C then TpX ⊆ 〈Tp1X , . . . ,TprX 〉.
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A bit of context
to understand the importance of the Second Terracini’s Lemma

The second Terracini’s Lemma led to

• weak defectivity [Chiantini-Ciliberto]

• tangential weak defectivity [Chiantini-Ottaviani] ∼ there is
a positive dimensional subvariety C of X for which
TqC ⊂ 〈2A〉 for general A ⊂ X .
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A geometric question II
What happens in the non generic scenario?

When X ⊂ PN is not r -twd, for general points p1, . . . , pr we have
that if 〈Tp1X , . . . ,TprX 〉 ⊃ TPX 6= ∅ then P = pi for some i .

However, there might exists special sets of points
A = {p1, . . . , pr} ⊂ Xsm for which

〈2A〉 ⊃ TqX , for infinitely many q ∈ X .

We are interested in these points.
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A new geometric object

Let X ⊂ PN be an integral and non-degenerate variety embedded
via an ample line bundle. We study

Er (X ) = {A ⊂ Xsm | 〈2A〉 6= PN , 〈2A ∪ {2p}〉 = 〈2A〉, for p ∈ Xsm \ A}
= {A ⊂ Xsm | h0(I2A(1)) 6= 0, h0(I2A∪2p(1)) = h0(I2A(1))}

For a given set A ⊂ Xsm, the tangential contact locus C (A) of A
is

C (A) = {p ∈ Xsm \ A | 〈2p〉 = TpX ⊂ 〈2A〉}

and we are esepecially interested when C (A) is infinite.

Er (X ) is an exploration of non-generic set of points having a
positive dimensional tangential contact locus.
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Relation between Tr(X ) and Er(X )
Is there any?

• A curve C ⊂ P2 of degree 4 has 28 bitangents. So T2(C ) 6= ∅.
But each bitangent does not intersect C in other points
=⇒ E2(X ) = ∅.

• For a cone X ⊂ PN ,
T1(X ) = ∅ while
E1(X ) 6= ∅ and the
contact locus is positive
dimensional.

q

p

C (p)

X ⊂ PN
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What happens for tensor related varieties?

• For rational normal curves one easily shows that it is always
empty

• Veronese and Segre-Veronese varieties: work in progress
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Why is this relevant?
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1) Identifiability

[Proposition 2.4, CO] shows that

If there exists a set A of r particular points such that the span
〈2A〉 contains TpX only if p ∈ A then identifiability for general

rank-r tensors holds.ww�
if Er (X ) 6= X r then generic r -identifiability holds

In the quest for identifiability one wants to

avoid both Tr (X ) and Er (X ).
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2) Other applications?

Possibly, TBD :)
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Thank you!
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