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Disclaimer

A bit of many things..



Some history facts

• From the 60s: Tensor decompositions used for analyzing 
collections of data matrices viewed as three-way arrays:

- 1966: Tucker decomposition in psychometrics

- 1970: PARAFAC (parallel factor) decomposition by Harshman in 
phonetics, CANDECOMP (canonical decomposition) by Carroll & Chang 
in psychometrics, a.k.a. CP (CANDECOMP/PARAFAC) by Kiers (2000)

• PARFAFAC/CP invented by Hitchcock in 1927: seminal idea of 
polyadic form of a tensor (sum of rank-one components)        
→ canonical polyadic decomposition (CPD)



Some history facts (cont’d)

• From the 90s: Tensor decompositions were used in: 
- Chemistry, especially in chemometrics (Bro’s Ph.D. thesis, 1998)

- Signal processing (blind source separation (BSS) using cumulant
tensors (J.F. Cardoso, P. Comon, 1990, L. De Lathauwer, 1997)

• Since 2000: Tensor decompositions introduced in wireless 
communication problems (N. Sidiropoulos et al., 2000), and
image analysis (Vasilescu & Terzopoulos, 2002)

• Last two decades: Tensor-based signal processing (wireless 
communications, antena array processing, image, speech 
processing, big data processing/analysis

• More recently: Numerous applications in machine 
learning/artificial intelligence (ML/AI)



Motivation

• Separation of data sets into components/factors to extract 
the multimodal structure of data and useful information from 
noisy measurements 

• Dimensionality reduction of multidimensional data 
⇒ Approximate low-rank tensor decompositions/models

⇒ Tensor train decompositions (massive datasets)

• Completion of data tensors in presence of missing data
⇒ New optimization problems and tensor-based algorithms 

• Dynamic/streaming tensor analysis
⇒ Tensor factorization algorithms for high-order/large-scale tensors 
in distributed setup (parallel computing, tensor tracking, etc.)



Motivation (signal processing & communications)

• Exploit the multidimensional nature of the wireless channel
and its multiple forms of diversity

• Blind/semi-blind channel estimation & symbol detection
under more relaxed conditions (compared to matrix-based SP)

• Complexity reduction of large-scale filter optimizations (e.g. 
massive antena arrays, equalizers, nonlinear filtering, neural 
network structures)

• Noise-relisient & robust multilinear modulation (low-rank 
tensor construction of the transmitted signals)



Tensor perspective to wireless communications
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Motivation (signal processing & communications)

• Exploit the multidimensional nature of the wireless channel
and its multiple forms of diversity

• Blind/semi-blind channel estimation & symbol detection
under more relaxed conditions (compared to matrix-based SP)

• Complexity reduction of large-scale filter optimizations (e.g. 
massive antena arrays, beamforming, equalizers, neural 
network structures)

• Noise-relisient & robust multilinear modulation (low-rank 
tensor construction of the transmitted signals)



Tensor decompositions

PART 1



What is a Tensor?

• An intuitive definition…



What is a tensor?

• A “nicer” mathematical definition

i-th position

(i,j,k)-th coordinate

: outer product

• Tensor as a multi-linear mapping



Unfolding a tensor into matrices



An useful operator: The n-mode product

• Defines a product between a tensor and a matrix (or vector)

• Multiple n-mode products

Concept of “multi-linear compression”

[De Lathauwer et al. ’2000]

[Kolda & Bader, 2009]



The “canonical” tensor decomposition

• Decomposition in a mimimal sum of rank-1 components

Also known as:
• Canonical polyadic decomposition (CPD)   [Hithcock’1927]

• Parallel Factor decomposition (PARAFAC)  [Harshman’1970] [Carroll & Chang’1970]

Tensor rank R → minimum # of rank-1 tensors yielding      in a combination



Canonical polyadic decomposition (CPD)

• Outer-product notation

• n-mode product notation

• “Vectorized” form

: Khatri-Rao product



Tucker decomposition

Full multi-linear map

• n-mode product notation • “Vectorized” form

[Tucker’1966]



High-order SVD (HOSVD)

• Generalization of matrix SVD to tensors [De Lathauwer et al. ’2000]



• Decomposition of a tensor into a sum of tensor “blocks” 
having lower multilinear ranks

Block term decomposition (BTD)

[De Lathauwer, 2008]

[De Lathauwer & Baynast, 2008]

Special case: decomposition into rank-(L,L,1) blocks



N-th order Tucker & Tucker-(N1,N)

• General expression:

• Tucker-(N1,N):



Tensor Train (TT) decomposition

• D-dimensional tensor as a “train” of smaller 3D tensors
[Oseledets, 2011]

Introduced to tackle the curse of dimensionality 
(case of “big data” tensors)



CONstrained FACtor decomposition (CONFAC)

CONFAC decomposition → Tucker-3 decomposition with  

“canonical” core tensor (PARAFAC-core)

[de Almeida et al, 2008]



• Scalar writing:

and

Columns of the constraint matrices           and    are 
canonical basis vectors (1’s and 0’s)

CONFAC decomposition (cont’d)

where

Tucker-3 with sparse PARAFAC core 



• Interpretation as a rank-R “constrained” CPD                            

PARAFAC:

CONFAC decomposition (cont’d)



CONFAC decomposition (cont’d)

◼ Essential uniqueness result [Stegeman & de Almeida, 2009]

is unique

full column rank; full column rankAssumptions:

impliesIf

• Class of PARALIND models [Bro’2009]

• Enjoy partial uniqueness at different levels
[Stegeman & de Almeida ’2009] [Miron & Brie, 2015]
[Guo et al, 2012]



• Variant of PARALIND/CONFAC with only N1 constrained  
factor matrices

PARALIND/CONFAC-(N1,N) decompositions

(Tucker-(N1,N) with a “PARAFAC-like” core)

[Favier & de Almeida, 2014]

Constraints only affect the first N1 modes while the other are “free” modes



Block PARALIND/CONFAC

• Block-partitioned version of PARALIND/CONFAC

with

Special case: Block CONFAC-(1,3)
Fixed constraint in only one mode (N1=1, N=3)

Block CONFAC-(1,3) → rank-(Lp,Lp,1) BTD



• The PARATUCK-2 decomposition 

PARATUCK-type decompositions

Tucker-(2,3) with a structured core tensor

[Harshman & Lundy, 1996]

Interpretation of       and       : interaction or allocation matrices



• PARATUCK-2 as a hybrid of PARAFAC and Tucker-2

[Favier & de Almeida, 2014]

Defining

Where is the PARAFAC structure?

PARATUCK-2: Tucker-2 with 
(hidden)  PARAFAC-core tensor

PARATUCK-type decompositions (cont’d)



• PARATUCK-2 as a “structured” Tucker-3  

PARATUCK-2 decomposition

Sparse core tensor

[Sokal et al, 2020]

Khatri-Rao-structured factor matrix

tensorize merge



• PARATUCK-(2,4) decomposition 

PARATUCK-(2,4) and PARATUCK-(N1,N)

[da Costa et al, 2011]

[de Araújo & de Almeida, 2022]

• PARATUCK-(N1,N) decomposition 

are entries of the factor matrix                                
and the interaction matrix  

[Favier & de Almeida, 2014]

Tucker-(2,4) with 
structured core tensor



• PARATUCK-2 as constrained PARAFAC-3 [Favier & de Almeida, 2014]

Defining constraint matrices

Equivalent expression:

Constrained PARAFAC-3 decomp.
(special CONFAC-(2,3)  case)

with

Links with constrained PARAFAC decompositions



Links with constrained PARAFAC decompositions

• PARATUCK-(2,4) as constrained PARAFAC-4 [Favier & de Almeida, 2014]

Defining and

Equivalent expression:

Constrained PARAFAC-4 decomp.
(special CONFAC-(2,4)  case)

with



Links with constrained PARAFAC decompositions

• PARATUCK-(N-2,N) as constrained PARAFAC-N [Favier & de Almeida, 2014]

Defining

and

Equivalent expression:

Constrained PARAFAC-N decomp.
(special CONFAC-(N-2,N)  case)



Nested Tucker decomposition (NTD)

Each third-order tensor                                                                                 
can be considered as a core tensor of a Tucker-          term having        
                                 as matrix factors, with:  

Train of Tucker-(2,3) terms, where two successive 
terms share a common factor matrix

First nesting

Second nesting

(N-2)th nesting



NTD-4 (case of 4th order tensor)

First nesting

Second nesting

Nesting of two Tucker-(2,3) tensors that share a common factor matrix



Nested PARAFAC (case of 4th order tensor)

Special case of Nested Tucker (NTD-4) with the following correspondences:

[de Almeida et al, 2013]

Nesting of two PARAFAC tensors that share a common factor matrix



Nested PARAFAC (con’t)

Define the tensors                                                           such as

or, equivalently in terms  of mode-n products

→               satisfy two 3rd order PARAFAC models 
that share a common factor matrix 



Nested PARAFAC (con’t)

→                     satisfy two nested 3rd-order PARAFAC models

• Merging the first two modes, we get:

• Merging the last two modes, we get:

• Unfoldings of              : 



Comparisons using tensor network diagrams

Nested Tucker-(2,4)

PARATUCK-(2,3)

Nested PARAFAC-4

CONFAC-3



Some applications

PART 2



Modeling/estimation of MIMO channels



• Tensor notation (4D tensor, rank- )

Space (Rx)

Space (Tx)

Frequency 

Time 

“Tensorizing” the MIMO channel model

• Usual (matrix) notation



• Expanding the tensor (+ 2D antenna arrays, e.g. URA)

“Tensorizing” the channel model (cont’d)

• Expanding the tensor (+ polarization) → 7 dimensions
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• Recasting the channel using Tensor Train model

Tensor Train Based Channel Estimation

• MIMO channel (rectangular arrays, dual-polarized antennas)

7D - channel tensor

Example:  64 x 32 URA MIMO, T=10, F= 128, 4 polarization pairs
# coefficients: 10.485.760  → very large tensor!!

How to reduce complexity of channel 
representation and estimation ?

CPD CPD CPD CPD CPD

[Znyed et al, 2020]
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Tensor Train Based Channel Estimation (cont’d)

Coupled LS  optimization

Factors retrieval

Tensor Train – SVD (TT-SVD) 

Dimensionality reduction

CPD’s

[Znyed et al., 2020]



Sparse channel modeling & estimation 

• Realistic channel models are not i.i.d→highly structured 

• Algebraic channel structure is heterogeneous in different
domains (e.g. space, frequency, time, polarization, etc...)

• Multidimensional channel structure is lost when working
with vectorized (or “matricized”) versions of the channel



Sparse channel modeling & estimation (cont’d)
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Sparse channel modeling & estimation 

• Expanding the 3D sparse channel tensor... 

Multi-linear compression !

• Equivalent “vectorized” Kronecker- CS model

[Caiafa & Cichocki’2013]

[Friedland, Li, Schonfeld ’2014]

[Duarte & Braniuk’2012]



Tensor-CS vs. Vector-CS

Complexity reduction



Exploiting multilinearity + sparsity + low-rankness

• MIMO channel tensor w/ correlated scattering (angular spread)

Tucker-3 model w/ sparse PARAFAC core 

PARAFAC/CPD

Basis matrices
(dictionaries)Sparse PARAFAC core



Design of semi-blind MIMO systems



CONFAC based MIMO transceivers
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Idea [de Almeida & Favier, 2008]

◼ Design flexible space-time MIMO schemes

◼ Capitalize on the CONFAC uniqueness to jointly 
estimate channel and symbols at the receiver

antenna allocation (M x F)

code allocation (Q x F)

symbol allocation (R x F)

channels

codes
symbols

Q

CONFAC model



• Variable antenna allocation patterns: Multiple data streams per transmit antenna

• Variable spreading code reuse patterns: Spreading codes can be reused by TX antennas

• Transmission flexibility: Several schemes possible by adjusting the allocation matrices

Key features

CONFAC-based MIMO system

◼ Received signal (n-th symbol, p-th chip, k-th Rx antenna): 

Note: columns of           and    are canonical 
basis vectors (1’s and 0’s)

PARAFAC DS-CDMA model
[Sidiropoulos et al, 2000]

Resource allocation tensorwith



Tensor Space-Time-Frequency (T-STF) Coding

• Received signal (noiseless case)

• T-STF coding model (5D)

→ Tucker-(2-5) model

Idea [de Almeida and Favier, 2014]

◼ Design generalized STF coding scheme 
with allocation flexibility over different 
STF domains (MIMO-OFDM-CDMA)
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T-STF vs. CONFAC vs. PARAFAC schemes
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CONFACPARAFAC
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[Sidiropoulos et al, 2000] [de Almeida et al, 2008]

[de Almeida & Favier, 2014]



MIMO Relay Systems



Semi-Blind MIMO Relay Systems

57

Idea: Use tensor coding at source and relay to jointly estimate 
the involved channels (source-relay and relay-destination) 

[Ximenes et al, 2015]

[Fernandes et al, 2016]

[Sokal et al, 2020]

[Znyed et al, 2018]
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Reconfigurable Intelligent Surfaces



Channel estimation with Reconfigurable Surfaces

59

Problem: Jointly estimate multiple channels in a communication 
system aided by reconfigurable surfaces  [de Almeida et al, 2024]

Single reflection links (PARAFAC):

Double reflection links (Nested PARAFAC):

or

and

Combine              and                to estimate     

Combine              and                to estimate     

Coupled Nested PARFAFAC decomp.



Multi-Linear Beamforming



• As the size of a sensor array grows, the 
beamforming operation needs more...
❖ Samples to estimate statistics

❖ Computation time to obtain weights

• Idea: Exploit the algebraic structure of 
separable arrays→multi-linearity property

Why multi-linear beamforming?



Multi-linear filtering

Idea: Kronecker filters as multilinear maps

• Consider the trilinear filter:

• Reshape the input signal vector into a 3d tensor:



Multi-linear filtering (cont’d)

• From tensor algebra, the trilinear filter output can be written as

Keep fixed Linear w.r.t. each subfilter

Idea:
• Design each “subfilter” instead of full filter 
• Computational complexity reduction



Tensor beamforming algorithms

• Alternating optimization approaches
❖ Tensor LMS     [Rupp & Schwarz’2015]

❖ Tensor GSC     [Miranda et al’2015]

❖ Tensor MMSE [Ribeiro et al’2016, Ribeiro et al’2019]

❖ Tensor LCMV  [Ribeiro et al’2019]

❖ Tensor Frost   [Ribeiro et al’2019]

• Example: Trilinear filter design 

1. Random initialization for 

2. Optimize for         with                  fixed – 𝑂(𝑁1
3) multiplications

3. Optimize for         with fixed – 𝑂 𝑁2
3 multiplications

4. Optimize for         with                   fixed – 𝑂 𝑁3
3 multiplications

5. Has converged?  If not, go back to step 2                

𝑁-dimensional filter 
with 𝑁 = 𝑁1𝑁2 𝑁3

𝑁1 𝑁2 𝑁3

Each filter is updated with alternating optimization methods

𝑂 𝑁1
3 + 𝑁2

3 + 𝑁3
3 vs. 𝑂(𝑁3)



Multi-linear Constellation Designs



Signal model

with

Principle
Any M-PSK constellation can be 
factorized into                          
different constellation sets:

Multi-linear constellation design

Multi-linear M-PSK constellation



Multi-linear constellation design

Transceiver

• Received signal after matched filtering (MF)

• Decoding as N-th order rank-one tensor approx. problem 

• Equivalent solution: maximize the tensor Rayleigh quotient



Multi-linear constellation design

Receiver processing
Kronecker Rank-One Detector (Kronecker-RoD)

Note: Decoding can be parallelized→ reduced latency



andre@gtel.ufc.br
Federal University of Ceará
profalmeida.com
Fortaleza, Brazil

Thank you!

Q&A
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