Exploiting low-rank geometry in deep learning
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In this talk

Recent work on theory and algorithms for reducing
model-order in deep learning via low-rank factorizations

Thanks to several collaborators:

* P. Deidda; E. Zangrando (GSSI, Italy 1T)
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* G. Ceruti (Univ of Innsbruck, Austria AT)

* J. Kusch (Univ of Oslo, Norway NO)

* S. Brugipaglia (Concordia Univ, Canada CA)



Outline

* Introduction/motivation
* Dynamical low-rank training (DLRT) algorithm and theory

* Experimental evaluation



Fast growth of model size

Model # trainable parameters
ResNet-50 0 (10) million
BERT 0(10%) million
GPT-2 0(103) million
DALL-E 0(10*) million
LLaMA 0(10°) million
Gemini 0(10°) million

Prohibitive memory, inference, training, fine-tuning cost



Storage, inference, training costs

e Large language models typically require hundreds of gigabytes to load
and expensive GPUs to be used, which places them outside the range of
most consumer electronics [Wikipedia]

* Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online
Videos — 30 epochs training took 9 days on 720 V100 GPUs
AWS price/h smallest V100 (p3) = S3 = 3*9*24*720~S470K
[Baker et al., NeurlPS 2022]

* In the USA market alone, Al energy demand is expected to reach 35GW
by 2030 (up from 17 GW in 2022), the equivalent of powering 26V
homes [McKinsey]


https://aws.amazon.com/ec2/pricing/on-demand/

reduce memory and computation footprints
while retaining performance

II Parameter reduction




A variety of approaches in DL literature

* Neural Architecture Search (NAS)
* Distillation

* Quantization

* Graph sparsification

* Weight pruning

* Layer factorization



Compress after training

Train the full network

@] plelf=f3 Choose how to reduce model size

Fine-tune the compressed model




Lottery ticket hypothesis

.:,—=" The lottery ticket hypothesis: finding sparse, trainable neural
=d|] networks. J Frankle, M Carbin, ICLR 2019
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A randomly-initialized dense NN
contains a subnetwork that, when
trained in isolation and for the same
number of iterations, can match the
accuracy of the original full network
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Full network vs pruned network as level of pruning increases on LeNet5



I Bottlenecks

* Speed-up: Sparsification requires specialized hardware
capable of leveraging sparse layers in order to produce a
real speedup

* Training memory: In this approach, finding the winning
tickets requires training the full network
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I Train and compress
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Pruned network
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I Train and compress / train while compressing I
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Pruned network
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I Layer factorization

NN: fx) =hy heyr = fo(hys W, by)  hy =x
v
w — X .

Storage and operations cost: 0 (nm) O(nr + mr)
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I I Training factorized layers




Direct training of low-rank factorization

Fix the rank of the layers written as W = XY and interpret the loss L
as a function of the factors:

min L(x;W) — min L(x;X,Y)

W~nxXn X,Y~nXr

Then train in parallel with respect to the two small variables

X «sgd[VyL(x;X,Y)]; Y «sgd[VyL(x;X,Y)]
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Fine-tuning LLMs: f,(x; W, + A,B))

LORA: LOW-RANK ADAPTATION OF LARGE LAN-
GUAGE MODELS

Edward Hu" Yelong Shen* Phillip Wallis Zeyuan Allen-Zhu
Yuanzhi Li Shean Wang Lu Wang Weizhu Chen

QLORA: Efficient Finetuning of Quantized LLMs

Tim Dettmers* Artidoro Pagnoni* Ari Holtzman

Luke Zettlemoyer
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..and also (pre)training

ReLoRA: High-Rank Training Through
Low-Rank Updates

Vladislav Lialin™** Sherin Muckatira’, Namrata Shivagunde’, and Anna Rumshisky'*

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Jiawei Zhao! Zhenyu Zhang® Beidi Chen?* Zhangyang Wang> Anima Anandkumar ' Yuandong Tian ">
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Drawbacks

* It is highly sensitive to initialization
e Typically requires a full warm-up pass: train the full model for some epochs at the
beginning and then compress with a (regularized) SVD

* It is highly sensitive to small singular values at initialization and during
training

e Convergence can be slow

* It requires to manually adjust the ranks
* Typically requires leaving k initial layers untouched; test for various choices of r
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Training exploiting the Riemannian geometry

* When the factorization model forms a
smooth manifold M one can “do better”

* Our approach:
Project the gradient flow

W(t) = —VL(x; W(t))

onto the tangent plane at each point
and then retract to M when integrating
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USV parametrization

e M ={USV":U,V ~n X r orthonormal ,S ~ r X r invertible}
Smooth Riemannian manifold

* Py = projection on the tangent plane of M at the point X € M

* Projected gradient flow:
W(t) = =Py VL(x; W (D))
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System of ODEs for the factors

 When W = USV'" € M, the projected gradient flow coincides with

S=-U"V,L(W)V
U=-I-UU"V,L(W)VS!
V=-U-VVDOV, LAW)TUs T
However:
e Equation is stiff when the singular values of S are small
* It requires the gradient with respect to the full weight W
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Change of parametrization

=[| An unconventional DLR integrator, Ceruti, Lubich, BIT 2022

KLS trick:

Change variables: K(t) = U(t)S(t), L(t) = V(t)S(¢)T
S =-VLUSVT)
K=-V,L(KVT")
L=-V,L(UL)T

Note that K, L have the same thin shapeas U, V.

Drawback: there is an implicit dependence on U and V - it is not obvious
how one can run the updates in parallel
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Rank-adaptive DLRT algorithm

Based on this system of ODEs, we propose a rank-adaptive
training algorithm that simultaneously updates U, S,V and has
several theoretical guarantees
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Rank-adaptive DLRT scheme

=] GeolLoRA: Geometric integration for parameter-efficient ft, arXiv, 2024

=

1. In parallel:
e K «sgd[V,L(xy,;USVT)]; L« sgd[VyL(x,;USVT)]; S« sgd[VsL(xy;USVT)]
2. Inparallel: U « basis_aug(U,K) V « basis_aug(V,L)
& S L'V
3. Form the augmented § « | _= ~ 2r X 2r
U'K 0

4. Compress S to its best T low-rank approximation
S « matrix Z with smallest rank such that ||S — Z|| < = [|S ||

and form the new U, IV accordingly
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Training cost (per iteration)

* When we do the basis augmentation we need to:
e Perform a QR decomposition of n X r matrix — cost: 0 (nr?)

* For the best low-rank approximation up to error 7, we need to:
e Perform an SVD decomposition of r X r matrix — cost: O (r3)

Cost per iteration Memory storage
Direct 0(2nr) 0(2nr)
DLRT 0(nr?) + 0(3) + 0(2nr) 0(2nr + %)

Full 0(n?) 0(n?)
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II Analysis




Theorem (Descent and convergence using SGD)

Assume the loss L is smooth and bounded. Let W}, = U, SV, be the
weight matrices computed after k training iterations using SGD with
learning rate A, and truncation parameter 7.

Then:

Exs1[L(Wii1)] < L(W) — Ay ( Mk) [ [HPkaka(Wk)H ] + LTy,
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Theorem (Descent and convergence using SGD)

Moreover, assume:

1. the learning rate sequence satisfies the Robin-Monro conditions
Yp A =+ Y ldji < 4o
2. the rank distribution stabilizes fast enough, namely
~ 12
N Y[ Wie = Wie||” < 400
where W, is the matrix before rank adjustment.

= liminf By |[|Pw, Ve, LW = 0
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Rank evolution (feed forward fully connected)

— rank layer 1
—— rank layer 2
—— rank layer 3
— rank layer 4
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Theorem (Error-bound when using GD)

Assume:

 W(t) € solution of the full-model gradient flow at time t

e W, = U,S,V, € computed after k training iterations of DLRT, with GD
using learning rate A and error tolerance t©

If the gradient VL(W (t)) is e-close to M., at time t = kA, then

‘W(t) — U S Vi | < cie+ oA + c37/2
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I Winning ticket interpretation

An informal way to interpret the previous theorem:

If there exists a low-rank winning ticket (a highly-performing
low-rank subnetwork) then the proposed DLRT scheme well
approximates it
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s there a good low-rank subnet?
Extensive recent work on low-rank implicit bias

o=

|

* Arora, Cohen, Hu, Luo, Implicit regularization in deep matrix factorization,
NeurlPS 2019

o=

* Singh, Bachmann, Hofmann. Analytic insights into structure and rank of neural
network Hessian maps, NeurlPS 2021

* Feng, Zheng, Huang, Zhao, Jordan, Zha, Rank Diminishing in Deep Neural
Networks, NeurlPS 2022

* Huh, Mobahi, Zhang, Cheung, Agrawal, Isola, The low-rank simplicity bias in
deep networks, TMLR 2023

* Chou, Gieshoff, Maly, Rauhut, Gradient descent for deep matrix factorization:
] Dynamics and implicit bias towards low rank, Appl Harmonic Analysis, 2024

e Galanti, Siegel, Gupte, Poggio, SGD and Weight Decay Provably Induce a Low-

Rank Bias in Deep Neural Networks, 2024
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Majority of recent theory is for linear networks

[Bah, Rauhut, Terstiege, Westdickenberg, Deep linear neural networks:
Riemannian gradient flows and convergence to global minimizers, 2022.]

Deep linear network with N layers: fa(x) = WyWy_1 - W, Wi x

Thm: (Training on low-rank manifold and full training coincide)
e L be the square loss L(8) = ||fg(x) — yl|?

c W* = WyWy_q - W, W bes.t. W = argmin L(0)

Then, if rank W* = r, we have W;" = argminyany w,=L(6)
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Theorem (Neural Rank Collapse)

Given a dataset X € R? |et

TCV(r) = ,.IIIUlIIl z z Ix — u(CHII?

U;Ci=X =1 xX€ECj
and let I/, be a stationary point of any FFNN trained with L + A||W||?. Then,

TCV(X,, r
min ||W, — Z||* < C, min (X )
rank(2)sr k<t A

where X, is the output of layer k. In other words: W, = R(r) + small err
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4-layer auto encoder

X = 10 Gaussian

blobs with variance g2
U

TCV(X, 10) = ¢?
U
W, =rankl10 + E
IEIl = 0(a?/2)

e
AR
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relative spectral tail of non-linear autoencoder trained on 10 Gaussian blobs
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Tensor kernels

Almost everything transfers to the tensor case.

For example, consider a conv kernel

W+ X)(in iy i3, 00) = ) Wi o a )X forts = Jar s = Ji)
j21j31j4-

* Two possibilities: (a) matricization, (b) tensor factorization
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CNN via tensor factorizations

It is known that tensor factorizations work well on CNNs

CP Tucker
TZEWi®xi®yi®Zi T
i

=(C XUy Xy U, X3 U3z X, U,

 Lebedev,Ganin,Rakhuba,Oseledets,Lempitsky,

ICLR 2015
* Kim, Park, Yoo, Choi, Yang, Shin, ICLR
e Astrid, Lee, BigComp 2017 2016
* Phan, Sobolev, Sozykin, Ermilov, Gusak, * Kossaifi, Bulat, Tzimiropoulos, Pantic,
Tichavsky, Glukhov, et al, ECCV, 2020 CVPR 2019

* Song, Zhang, Li, ICMLT 2020
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TDLRT

Tucker decomposition forms a smooth manifold, so we can
define the tangent plane there and adapt the algorithm using
HOSVD in place of the classical SVD
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II Experimental evaluation




: 2
min]|Wiarget — W]

W ~ 5000 x 5000, rank(W) =5, A = 0.1, Initial rank = 50

Full fine-tuning (FT) (blue),

1. g
2. DLRT from (Schotthofer et al., 2022) (orange), =. , Training Setup
3. The proposed GeoLoRA method (green), g | T RulF
4. Fixed rank LoRA from Hu et al. (2021) (red), £~ ceplomarr -
5. AdaLoRA from (Zhang et al., 2023) (brown), ~ ' — LoraFT
6. Fixed rank AdalLoRA (purple). 105 H T iL/EL;; F;AFET

10-° 100 10! 102 107

lteration

AdaLoRA imposes orthogonality on U,V adding penalty terms ||[UTU — I||? .



Compression rate behavior (FFFC)
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LeNet

NN metrics Evaluation Train
method test acc. ranks params C.T. params C.T.
LeNet5 99.2% 20, 50, 500, 10] 430500 0% 430500 0%
— 7=0.11 98.0% 115,46, 13, 10] 47975 88.86% 50585 88.25%
Qj T =0.15 97.8% 13,31,9,10 34435 92.0% 35746 91.7%
N T7=0.2 97.2% 10,20, 7,10 25650 94.04% 26299 93.89%
T=20.3 95.3% 6,9,4,10] 15520 96.4% 15753 96.34%
SSL [62] (ft) 99.18% 110000 74.4% < 0%
NISP [58] (ft) 99.0% 100000 76.5% < 0%
GAL [42] 98.97% 30000 93.0% < 0%
LRNN [28] 98.67% 13,3,9,9] 18075 95.8% < 0%
SVD prune [61] 94.0% 2, 5,89, 10] 123646 71.2% < 0%
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Comparison with direct factorization descent
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CIFAR1O

VGG16 Alexnet ResNet18
testacc. [%] c.r. [%] testacc. [%] c.ar. [%] testacc. [%] c.r. [%]

Baseline 92.01 0.0 85.46 0.0 94.33 0.0

TDLRT (ours) 90.23 94.40 82.39 83.12 92.72 78.73
& Matrix DLRT [68] 89.13 83.22 73.57 71.57 80.98 56.85
S Tucker-factorized [38] 86.71 91.4 70.30 69.74 91.11 74.19
N
S Matrix-factorized [79] 84.54 9434  77.07 68.20 92.07 77.49
§ CP-factorized [44] 82.53 89.98 76.14 71.46 91.87 69.95
M Tucker RGD [74] 81.48 84.26 73.88 74.01 92.76 74.18

TT-factorized [62] 87.27 90.30 78.13 88.14 87.13 81.24
20 SNIP [45] 89.58 56.23 — — 89.50 78.50
S IMP[20] 87.21 58.54 — - 90.50 82.50
E GraSP [78] 88.50 77.30 — - 89.40 77.90




GLUE benchmark (fine-tuning)

General Language Understanding Evaluation

Method (# Params) MNLI SST-2 CoLA QQpP QNLI RTE MRPC STS-B
(Acc) (Acc) (Mcc) (F1) (Acc) (Acc) (Acc) (Corr)
Full FT (184M) 89.90 95.63 69.19 89.80 94.03 83.75 89.46 91.60
BitFit (0.1M) 89.37 94.84 66.96 84.95 92.24 78.70 87.75 91.35
HAdapter (1.22M) 90.13 95.53 68.64 89.27 94.11 84.48 89.95 91.48
PAdapter (1.18M) 90.33 95.61 68.77 89.40 94.29 85.20 89.46 91.54
LoRA r=8 (1.33M) 90.29 95.29 68.57 90.61 93.91 85.5 89.75 89.10
AdalLoRA (1.27M) 90.44 95.64 68.76 90.65 94.11 86.00 89.44 91.41

GeoLoRA (reported individually)  89.98 (0.7M) 95.98 (1.17M)  69.03 (0.98M) 90.53 (0.69M) 94.23 (0.7M) 85.93 (1.19M) 90.10 (0.75M) 91.58 (0.71M)

Evaluation and train time comparison

AdalL.oRA (eval/train) [it/sec] 12.4/4.3 17.6/6.7 24.6/8.1 9.2/3.2 4.9/1.6 10.3/3.2 9,9/3.1 21.1/8.5
GeoLoRA (eval/train) [it/sec] 17.1/4.9 21.3/8.3 37.4/9.1 12.0/3.8 5.9/1.8 13.2/3.7 12.6/3.7 21.3/8.3
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ViT and Stable Diffusion

Table 3: Vit-base-patch16-224 fine-tuning on Cifar10, 100 and Tiny- Table 4: Stable Diffusion on
Imagenet. We compare AdalLoRA to GeoLoRA with local and Dreambooth benenchmark. We
global budgeting reporting the median of 5 runs using different compare LoRA and GeoLoRA

random seeds. reporting the median of 5 runs.
Method Cifar 10 [%] Cifar 100 [%] Tiny-Imagenet [%] Method Val. Loss  # Params
# Params Acc[%] #Params Acc[%] #Params Acc[%] LoRA (r = 5) 0.275 30M
AdaLoRA 047M  98.51 0.45M  91.44 0.9M 87.2 LoRA (r = 3) 0.281 1.8 M
GeoLoRA, local 0.47M 98.55 0.35M 91.63 0.92M 88.09 GeoLoRA (7 =0.02)  0.242 2.6M

GeoLoRA, global  0.48M 98.51 0.47M 91.62 0.75M 88.07 GeoLoRA (7 = 0.1) 0.257 1.4M
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Time and sensitivity to singular values

inference time [s]

' e 1.0
Alexnet - TDLRT
10?1 VGG16 - TDLRT V,GGIGO 6.8
baseline » C.1. 63.6%
» C.I. 84.3% }?0.6 -
” é Method time to 60% acc.
A -
»cr.96.7%a * Alexnet L‘(’ 04 Tucker (best case) 2.35s
il Acr. 62.3% —— TDLRT Tucker (worst case) 4.70s
Acr. 83.5% 0.2, —— Tucker TDLRT (fixed rank) 2.41s
| acr. 96.5% - b | A cp TDLRT 4.16s
10° 10 107 ) 200 400 600 800
convolution paramters optimization step
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Conclusions

* Large/deep nets tend to be (approximately) low-rank
* Training low-rank factors is not necessarily straightforward

* We propose a particular Riemannian optimization strategy (DLRT) that
has several theoretical guarantees

* DLRT outperforms default gradient descent on the factorization XY '
both in the martrix and the tensor Tucker case
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Thank you!

S=[l « [NeurlPS22] Low-rank lottery tickets: finding efficient low-
~rank neural networks via matrix differential equations

=5|] * [NeurlPS23] Robust low-rank training via approximate
orthonormal constraints

=5|] « [NeurlPS24] Geometry-aware training of factorized layers
in tensor Tucker format

=a|| * [arXiv] Neural rank collapse in feed-forward networks

==n °* [arXiv] GeoLoRA: Geometric integration for parameter-
=820 efficient fine-tuning
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