Exploiting low-rank geometry in deep learning

Francesco Tudisco




In this talk

Recent work on theory and algorithms for reducing
model-order in deep learning via low-rank factorizations

Thanks to several collaborators:

* P. Deidda; E. Zangrando (GSSI, Italy 1T)

* S. Schotthoefer (Oak Ridge National Lab, USA us)
* G. Ceruti (Univ of Innsbruck, Austria AT)

* J. Kusch (Univ of Oslo, Norway NO)

* S. Brugipaglia (Concordia Univ, Canada CA)



Outline

* Introduction/motivation
* Dynamical low-rank training (DLRT) algorithm and theory

* Experimental evaluation



Fast growth of model size

Model # trainable parameters
ResNet-50 0 (10) million
BERT 0(10%) million
GPT-2 0(103) million
DALL-E 0(10*) million
LLaMA 0(10°) million
Gemini 0(10°) million

Prohibitive memory, inference, training, fine-tuning cost



Storage, inference, training costs

e Large language models typically require hundreds of gigabytes to load
and expensive GPUs to be used, which places them outside the range of
most consumer electronics [Wikipedia]

* Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online
Videos — 30 epochs training took 9 days on 720 V100 GPUs
AWS price/h smallest V100 (p3) = S3 = 3*9*24*720~S470K
[Baker et al., NeurlPS 2022]

* In the USA market alone, Al energy demand is expected to reach 35GW
by 2030 (up from 17 GW in 2022), the equivalent of powering 26V
homes [McKinsey]


https://aws.amazon.com/ec2/pricing/on-demand/

reduce memory and computation footprints
while retaining performance

II Parameter reduction




A variety of approaches in DL literature

* Neural Architecture Search (NAS)
* Distillation

* Quantization

* Graph sparsification

* Weight pruning

* Layer factorization



Compress after training

Train the full network

@] plelf=f3 Choose how to reduce model size

Fine-tune the compressed model




Lottery ticket hypothesis

.:,—=" The lottery ticket hypothesis: finding sparse, trainable neural
=d|] networks. J Frankle, M Carbin, ICLR 2019

(.990

0.983 .
|*H'|‘J+H=H+‘Hl|ﬁﬁfll 1}
0.976 Al

=+

A randomly-initialized dense NN
contains a subnetwork that, when
trained in isolation and for the same
number of iterations, can match the
accuracy of the original full network

Accuracy at Early-Stop (Test)

0.941 T 1 T 1 1 | T T
100 87.5 75.0 626 50.1 376 251 127
Percent of Weights Remaining

Full network vs pruned network as level of pruning increases on LeNet5



I Bottlenecks

* Speed-up: Sparsification requires specialized hardware
capable of leveraging sparse layers in order to produce a
real speedup

* Training memory: In this approach, finding the winning
tickets requires training the full network

10



I Train and compress

dajs Suiunud

\

Pruned network

11



I Train and compress / train while compressing I

dais Suiunug

\

Pruned network

12



I Layer factorization

NN: fx) =hy heyr = fo(hys W, by)  hy =x
v
w — X .

Storage and operations cost: 0 (nm) O(nr + mr)

13



I I Training factorized layers




Direct training of low-rank factorization

Fix the rank of the layers written as W = XY and interpret the loss L
as a function of the factors:

min L(x;W) — min L(x;X,Y)

W~nxXn X,Y~nXr

Then train in parallel with respect to the two small variables

X «sgd[VyL(x;X,Y)]; Y «sgd[VyL(x;X,Y)]

15



Fine-tuning LLMs: f,(x; W, + A,B))

LORA: LOW-RANK ADAPTATION OF LARGE LAN-
GUAGE MODELS

Edward Hu" Yelong Shen* Phillip Wallis Zeyuan Allen-Zhu
Yuanzhi Li Shean Wang Lu Wang Weizhu Chen

QLORA: Efficient Finetuning of Quantized LLMs

Tim Dettmers* Artidoro Pagnoni* Ari Holtzman

Luke Zettlemoyer

16



..and also (pre)training

ReLoRA: High-Rank Training Through
Low-Rank Updates

Vladislav Lialin™** Sherin Muckatira’, Namrata Shivagunde’, and Anna Rumshisky'*

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Jiawei Zhao! Zhenyu Zhang® Beidi Chen?* Zhangyang Wang> Anima Anandkumar ' Yuandong Tian ">

17



Drawbacks

* It is highly sensitive to initialization
e Typically requires a full warm-up pass: train the full model for some epochs at the
beginning and then compress with a (regularized) SVD

* It is highly sensitive to small singular values at initialization and during
training

e Convergence can be slow

* It requires to manually adjust the ranks
* Typically requires leaving k initial layers untouched; test for various choices of r

18



Training exploiting the Riemannian geometry

* When the factorization model forms a
smooth manifold M one can “do better”

* Our approach:
Project the gradient flow

W(t) = —VL(x; W(t))

onto the tangent plane at each point
and then retract to M when integrating

19



USV parametrization

e M ={USV":U,V ~n X r orthonormal ,S ~ r X r invertible}
Smooth Riemannian manifold

* Py = projection on the tangent plane of M at the point X € M

* Projected gradient flow:
W(t) = =Py VL(x; W (D))

20



System of ODEs for the factors

 When W = USV'" € M, the projected gradient flow coincides with

S=-U"V,L(W)V
U=-I-UU"V,L(W)VS!
V=-U-VVDOV, LAW)TUs T
However:
e Equation is stiff when the singular values of S are small
* It requires the gradient with respect to the full weight W

21




Change of parametrization

=[| An unconventional DLR integrator, Ceruti, Lubich, BIT 2022

KLS trick:

Change variables: K(t) = U(t)S(t), L(t) = V(t)S(¢)T
S =-VLUSVT)
K=-V,L(KVT")
L=-V,L(UL)T

Note that K, L have the same thin shapeas U, V.

Drawback: there is an implicit dependence on U and V - it is not obvious
how one can run the updates in parallel

22



Rank-adaptive DLRT algorithm

Based on this system of ODEs, we propose a rank-adaptive
training algorithm that simultaneously updates U, S,V and has
several theoretical guarantees

23



Rank-adaptive DLRT scheme

=] GeolLoRA: Geometric integration for parameter-efficient ft, arXiv, 2024

=

1. In parallel:
e K «sgd[V,L(xy,;USVT)]; L« sgd[VyL(x,;USVT)]; S« sgd[VsL(xy;USVT)]
2. Inparallel: U « basis_aug(U,K) V « basis_aug(V,L)
& S L'V
3. Form the augmented § « | _= ~ 2r X 2r
U'K 0

4. Compress S to its best T low-rank approximation
S « matrix Z with smallest rank such that ||S — Z|| < = [|S ||

and form the new U, IV accordingly

24



Training cost (per iteration)

* When we do the basis augmentation we need to:
e Perform a QR decomposition of n X r matrix — cost: 0 (nr?)

* For the best low-rank approximation up to error 7, we need to:
e Perform an SVD decomposition of r X r matrix — cost: O (r3)

Cost per iteration Memory storage
Direct 0(2nr) 0(2nr)
DLRT 0(nr?) + 0(3) + 0(2nr) 0(2nr + %)

Full 0(n?) 0(n?)

25



II Analysis




Theorem (Descent and convergence using SGD)

Assume the loss L is smooth and bounded. Let W}, = U, SV, be the
weight matrices computed after k training iterations using SGD with
learning rate A, and truncation parameter 7.

Then:

Exs1[L(Wii1)] < L(W) — Ay ( Mk) [ [HPkaka(Wk)H ] + LTy,

27



Theorem (Descent and convergence using SGD)

Moreover, assume:

1. the learning rate sequence satisfies the Robin-Monro conditions
Yp A =+ Y ldji < 4o
2. the rank distribution stabilizes fast enough, namely
~ 12
N Y[ Wie = Wie||” < 400
where W, is the matrix before rank adjustment.

= liminf By |[|Pw, Ve, LW = 0

28



Rank evolution (feed forward fully connected)

— rank layer 1
—— rank layer 2
—— rank layer 3
— rank layer 4

\

|

|

\

50

100

150
epoch

200 250

(a) Rank evolution for 7 = 0.15

rank

80

70

60

50

—

—_—

—— rank layer 2
—— rank layer 3
—— rank layer 4

S

\_\_\
— rank layer 1

1 50

100

150
epoch

200

(b) Rank evolution of 7 = 0.05

250

29




Theorem (Error-bound when using GD)

Assume:

 W(t) € solution of the full-model gradient flow at time t

e W, = U,S,V, € computed after k training iterations of DLRT, with GD
using learning rate A and error tolerance t©

If the gradient VL(W (t)) is e-close to M., at time t = kA, then

‘W(t) — U S Vi | < cie+ oA + c37/2

30



I Winning ticket interpretation

An informal way to interpret the previous theorem:

If there exists a low-rank winning ticket (a highly-performing
low-rank subnetwork) then the proposed DLRT scheme well
approximates it

31



s there a good low-rank subnet?
Extensive recent work on low-rank implicit bias

o=

|

* Arora, Cohen, Hu, Luo, Implicit regularization in deep matrix factorization,
NeurlPS 2019

o=

* Singh, Bachmann, Hofmann. Analytic insights into structure and rank of neural
network Hessian maps, NeurlPS 2021

* Feng, Zheng, Huang, Zhao, Jordan, Zha, Rank Diminishing in Deep Neural
Networks, NeurlPS 2022

* Huh, Mobahi, Zhang, Cheung, Agrawal, Isola, The low-rank simplicity bias in
deep networks, TMLR 2023

* Chou, Gieshoff, Maly, Rauhut, Gradient descent for deep matrix factorization:
] Dynamics and implicit bias towards low rank, Appl Harmonic Analysis, 2024

e Galanti, Siegel, Gupte, Poggio, SGD and Weight Decay Provably Induce a Low-

Rank Bias in Deep Neural Networks, 2024

32



Majority of recent theory is for linear networks

[Bah, Rauhut, Terstiege, Westdickenberg, Deep linear neural networks:
Riemannian gradient flows and convergence to global minimizers, 2022.]

Deep linear network with N layers: fa(x) = WyWy_1 - W, Wi x

Thm: (Training on low-rank manifold and full training coincide)
e L be the square loss L(8) = ||fg(x) — yl|?

c W* = WyWy_q - W, W bes.t. W = argmin L(0)

Then, if rank W* = r, we have W;" = argminyany w,=L(6)

33




Theorem (Neural Rank Collapse)

Given a dataset X € R? |et

TCV(r) = ,.IIIUlIIl z z Ix — u(CHII?

U;Ci=X =1 xX€ECj
and let I/, be a stationary point of any FFNN trained with L + A||W||?. Then,

TCV(X,, r
min ||W, — Z||* < C, min (X )
rank(2)sr k<t A

where X, is the output of layer k. In other words: W, = R(r) + small err

34



4-layer auto encoder

X = 10 Gaussian

blobs with variance g2
U

TCV(X, 10) = ¢?
U
W, =rankl10 + E
IEIl = 0(a?/2)

e
AR
f L ® |

.'- a ./-" :

i_ —

L] -

]
Varance

relative spectral tail of non-linear autoencoder trained on 10 Gaussian blobs
layer O layer 1

o

PNOVONONAWNEHO
sleleletototoYoTolo oY= T

R_R R g _§R _§ _*§
R A R R 42 _§ &R B _8

b b b

HSNOLVONOVNAWNHO
elelelelolelololelelele]
U TR U TR o Mo B
N N N I G S |

o

0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1
A A

a; 2
Fig. 6: Relative singular value tail error of each layer zi'?’; - (JV(VV;) :

35



Tensor kernels

Almost everything transfers to the tensor case.

For example, consider a conv kernel

W+ X)(in iy i3, 00) = ) Wi o a )X forts = Jar s = Ji)
j21j31j4-

* Two possibilities: (a) matricization, (b) tensor factorization

36



CNN via tensor factorizations

It is known that tensor factorizations work well on CNNs

CP Tucker
TZEWi®xi®yi®Zi T
i

=(C XUy Xy U, X3 U3z X, U,

 Lebedev,Ganin,Rakhuba,Oseledets,Lempitsky,

ICLR 2015
* Kim, Park, Yoo, Choi, Yang, Shin, ICLR
e Astrid, Lee, BigComp 2017 2016
* Phan, Sobolev, Sozykin, Ermilov, Gusak, * Kossaifi, Bulat, Tzimiropoulos, Pantic,
Tichavsky, Glukhov, et al, ECCV, 2020 CVPR 2019

* Song, Zhang, Li, ICMLT 2020

37



TDLRT

Tucker decomposition forms a smooth manifold, so we can
define the tangent plane there and adapt the algorithm using
HOSVD in place of the classical SVD

38



II Experimental evaluation




: 2
min]|Wiarget — W]

W ~ 5000 x 5000, rank(W) =5, A = 0.1, Initial rank = 50

Full fine-tuning (FT) (blue),

1. g
2. DLRT from (Schotthofer et al., 2022) (orange), =. , Training Setup
3. The proposed GeoLoRA method (green), g | T RulF
4. Fixed rank LoRA from Hu et al. (2021) (red), £~ ceplomarr -
5. AdaLoRA from (Zhang et al., 2023) (brown), ~ ' — LoraFT
6. Fixed rank AdalLoRA (purple). 105 H T iL/EL;; F;AFET

10-° 100 10! 102 107

lteration

AdaLoRA imposes orthogonality on U,V adding penalty terms ||[UTU — I||? .



Compression rate behavior (FFFC)

98.50
98.25
98.00
97.75
97.50

test accuracy

97.25
97.00

—o— 500 neurons
—8— 784 neurons

10° 10°
network weights

test accuracy

98.50
98.25
98.00
97.75
97.50
97.25
97.00

’—:_—_ __.__

—&— 500 neurons

—8— 784 neurons

0 20 40 60 80

compression [%]

41




LeNet

NN metrics Evaluation Train
method test acc. ranks params C.T. params C.T.
LeNet5 99.2% 20, 50, 500, 10] 430500 0% 430500 0%
— 7=0.11 98.0% 115,46, 13, 10] 47975 88.86% 50585 88.25%
Qj T =0.15 97.8% 13,31,9,10 34435 92.0% 35746 91.7%
N T7=0.2 97.2% 10,20, 7,10 25650 94.04% 26299 93.89%
T=20.3 95.3% 6,9,4,10] 15520 96.4% 15753 96.34%
SSL [62] (ft) 99.18% 110000 74.4% < 0%
NISP [58] (ft) 99.0% 100000 76.5% < 0%
GAL [42] 98.97% 30000 93.0% < 0%
LRNN [28] 98.67% 13,3,9,9] 18075 95.8% < 0%
SVD prune [61] 94.0% 2, 5,89, 10] 123646 71.2% < 0%

42



Comparison with direct factorization descent

B [ o { T T
1—180‘ E - Lo |
BE 2 70 3?‘ 93 ———*ihro——__.__
= 75 > 38 - = - H"'m.k_\ -
O [ [&] ——
© © e e,
S 70- 86 : 5 T
8?0 ------ Baseline 3 """ baseline 891_ ------ Baseline _ -
® g5 —e— TDLRT 844 —*— TDLRT _ _ ©7 | —— TDLRT
f —+—  Matrix Barl Matrix T 590_ —+—  Matrix

601 —— Tucker 9 —— Tucker —— Tucker

55+ CF 801 —+ CP 891 —< CP

60 65 70 75 80 85 90 95 100 60 65 70 75 80 85 90 95 100 60 65 70 75 80 85 90 95 100
compression rate[%] compression rate [%] compression rate[%]

(a) Alexnet Cifarl0 (b) VGGI16 Cifarl0 (c) ResNet18 Cifarl0

43



CIFAR1O

VGG16 Alexnet ResNet18
testacc. [%] c.r. [%] testacc. [%] c.ar. [%] testacc. [%] c.r. [%]

Baseline 92.01 0.0 85.46 0.0 94.33 0.0

TDLRT (ours) 90.23 94.40 82.39 83.12 92.72 78.73
& Matrix DLRT [68] 89.13 83.22 73.57 71.57 80.98 56.85
S Tucker-factorized [38] 86.71 91.4 70.30 69.74 91.11 74.19
N
S Matrix-factorized [79] 84.54 9434  77.07 68.20 92.07 77.49
§ CP-factorized [44] 82.53 89.98 76.14 71.46 91.87 69.95
M Tucker RGD [74] 81.48 84.26 73.88 74.01 92.76 74.18

TT-factorized [62] 87.27 90.30 78.13 88.14 87.13 81.24
20 SNIP [45] 89.58 56.23 — — 89.50 78.50
S IMP[20] 87.21 58.54 — - 90.50 82.50
E GraSP [78] 88.50 77.30 — - 89.40 77.90




GLUE benchmark (fine-tuning)

General Language Understanding Evaluation

Method (# Params) MNLI SST-2 CoLA QQpP QNLI RTE MRPC STS-B
(Acc) (Acc) (Mcc) (F1) (Acc) (Acc) (Acc) (Corr)
Full FT (184M) 89.90 95.63 69.19 89.80 94.03 83.75 89.46 91.60
BitFit (0.1M) 89.37 94.84 66.96 84.95 92.24 78.70 87.75 91.35
HAdapter (1.22M) 90.13 95.53 68.64 89.27 94.11 84.48 89.95 91.48
PAdapter (1.18M) 90.33 95.61 68.77 89.40 94.29 85.20 89.46 91.54
LoRA r=8 (1.33M) 90.29 95.29 68.57 90.61 93.91 85.5 89.75 89.10
AdalLoRA (1.27M) 90.44 95.64 68.76 90.65 94.11 86.00 89.44 91.41

GeoLoRA (reported individually)  89.98 (0.7M) 95.98 (1.17M)  69.03 (0.98M) 90.53 (0.69M) 94.23 (0.7M) 85.93 (1.19M) 90.10 (0.75M) 91.58 (0.71M)

Evaluation and train time comparison

AdalL.oRA (eval/train) [it/sec] 12.4/4.3 17.6/6.7 24.6/8.1 9.2/3.2 4.9/1.6 10.3/3.2 9,9/3.1 21.1/8.5
GeoLoRA (eval/train) [it/sec] 17.1/4.9 21.3/8.3 37.4/9.1 12.0/3.8 5.9/1.8 13.2/3.7 12.6/3.7 21.3/8.3

45



ViT and Stable Diffusion

Table 3: Vit-base-patch16-224 fine-tuning on Cifar10, 100 and Tiny- Table 4: Stable Diffusion on
Imagenet. We compare AdalLoRA to GeoLoRA with local and Dreambooth benenchmark. We
global budgeting reporting the median of 5 runs using different compare LoRA and GeoLoRA

random seeds. reporting the median of 5 runs.
Method Cifar 10 [%] Cifar 100 [%] Tiny-Imagenet [%] Method Val. Loss  # Params
# Params Acc[%] #Params Acc[%] #Params Acc[%] LoRA (r = 5) 0.275 30M
AdaLoRA 047M  98.51 0.45M  91.44 0.9M 87.2 LoRA (r = 3) 0.281 1.8 M
GeoLoRA, local 0.47M 98.55 0.35M 91.63 0.92M 88.09 GeoLoRA (7 =0.02)  0.242 2.6M

GeoLoRA, global  0.48M 98.51 0.47M 91.62 0.75M 88.07 GeoLoRA (7 = 0.1) 0.257 1.4M

46



Time and sensitivity to singular values

inference time [s]

' e 1.0
Alexnet - TDLRT
10?1 VGG16 - TDLRT V,GGIGO 6.8
baseline » C.1. 63.6%
» C.I. 84.3% }?0.6 -
” é Method time to 60% acc.
A -
»cr.96.7%a * Alexnet L‘(’ 04 Tucker (best case) 2.35s
il Acr. 62.3% —— TDLRT Tucker (worst case) 4.70s
Acr. 83.5% 0.2, —— Tucker TDLRT (fixed rank) 2.41s
| acr. 96.5% - b | A cp TDLRT 4.16s
10° 10 107 ) 200 400 600 800
convolution paramters optimization step

47



Conclusions

* Large/deep nets tend to be (approximately) low-rank
* Training low-rank factors is not necessarily straightforward

* We propose a particular Riemannian optimization strategy (DLRT) that
has several theoretical guarantees

* DLRT outperforms default gradient descent on the factorization XY '
both in the martrix and the tensor Tucker case

48



Thank you!

S=[l « [NeurlPS22] Low-rank lottery tickets: finding efficient low-
~rank neural networks via matrix differential equations

=5|] * [NeurlPS23] Robust low-rank training via approximate
orthonormal constraints

=5|] « [NeurlPS24] Geometry-aware training of factorized layers
in tensor Tucker format

=a|| * [arXiv] Neural rank collapse in feed-forward networks

==n °* [arXiv] GeoLoRA: Geometric integration for parameter-
=820 efficient fine-tuning

49



	Slide 1: Exploiting low-rank geometry in deep learning
	Slide 2: In this talk
	Slide 3: Outline
	Slide 4: Fast growth of model size 
	Slide 5: Storage, inference, training costs
	Slide 6: Parameter reduction  reduce memory and computation footprints while retaining performance
	Slide 7: A variety of approaches in DL literature
	Slide 8: Compress after training
	Slide 9: Lottery ticket hypothesis
	Slide 10: Bottlenecks
	Slide 11: Train and compress
	Slide 12: Train and compress / train while compressing
	Slide 13: Layer factorization
	Slide 14: Training factorized layers
	Slide 15: Direct training of low-rank factorization
	Slide 16: Fine-tuning LLMs: f ℓ x ; W ℓ A. ℓ B ℓ 
	Slide 17: …and also (pre)training
	Slide 18: Drawbacks
	Slide 19: Training exploiting the Riemannian geometry
	Slide 20: USV parametrization 
	Slide 21: System of ODEs for the factors
	Slide 22: Change of parametrization
	Slide 23: Rank-adaptive DLRT algorithm
	Slide 24: Rank-adaptive DLRT scheme
	Slide 25: Training cost (per iteration)
	Slide 26: Analysis
	Slide 27: Theorem (Descent and convergence using SGD)
	Slide 28: Theorem (Descent and convergence using SGD)
	Slide 29: Rank evolution (feed forward fully connected) 
	Slide 30: Theorem (Error-bound when using GD)
	Slide 31: Winning ticket interpretation
	Slide 32: Is there a good low-rank subnet? Extensive recent work on low-rank implicit bias
	Slide 33: Majority of recent theory is for linear networks
	Slide 34: Theorem (Neural Rank Collapse)
	Slide 35
	Slide 36: Tensor kernels 
	Slide 37: CNN via tensor factorizations
	Slide 38: TDLRT
	Slide 39: Experimental evaluation
	Slide 40: min w W target W 
	Slide 41: Compression rate behavior (FFFC)
	Slide 42: LeNet
	Slide 43: Comparison with direct factorization descent
	Slide 44: CIFAR10
	Slide 45: GLUE benchmark (fine-tuning) General Language Understanding Evaluation
	Slide 46: ViT and Stable Diffusion
	Slide 47: Time and sensitivity to singular values
	Slide 48: Conclusions
	Slide 49: Thank you!

