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In this talk

Recent work on theory and algorithms for reducing 
model-order in deep learning via low-rank factorizations

Thanks to several collaborators:
• P. Deidda; E. Zangrando (GSSI, Italy )
• S. Schotthoefer (Oak Ridge National Lab, USA )
• G. Ceruti (Univ of Innsbruck, Austria )
• J. Kusch (Univ of Oslo, Norway )
• S. Brugipaglia (Concordia Univ, Canada )
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Outline

• Introduction/motivation

• Dynamical low-rank training (DLRT) algorithm and theory

• Experimental evaluation
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Fast growth of model size 
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Model # trainable parameters

ResNet-50 𝑂(10) million

BERT 𝑂 102  million

GPT-2 𝑂(103) million

DALL-E 𝑂(104) million

LLaMA 𝑂(105) million

Gemini 𝑂(106) million

Prohibitive memory, inference, training, fine-tuning cost



Storage, inference, training costs

• Large language models typically require hundreds of gigabytes to load 
and expensive GPUs to be used, which places them outside the range of 
most consumer electronics [Wikipedia]

• Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online 
Videos — 30 epochs training took 9 days on 720 V100 GPUs
AWS price/h smallest V100 (p3) = $3 → 3*9*24*720~$470K
[Baker et al., NeurIPS 2022] 

• In the USA market alone, AI energy demand is expected to reach 35GW 
by 2030 (up from 17 GW in 2022), the equivalent of powering 26M 
homes [McKinsey]
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https://aws.amazon.com/ec2/pricing/on-demand/
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Parameter reduction 
reduce memory and computation footprints 
while retaining performance



A variety of approaches in DL literature

• Neural Architecture Search (NAS)

• Distillation

• Quantization

• Graph sparsification

• Weight pruning

• Layer factorization
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Compress after training
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Adjust Fine-tune the compressed model

Compress Choose how to reduce model size

Train Train the full network



Lottery ticket hypothesis

The lottery ticket hypothesis: finding sparse, trainable neural
networks. J Frankle, M Carbin, ICLR 2019 
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A randomly-initialized dense NN 
contains a subnetwork that, when 
trained in isolation and for the same 
number of iterations, can match the 
accuracy of the original full network

Full network vs pruned network as level of pruning increases on LeNet5



Bottlenecks

• Speed-up: Sparsification requires specialized hardware 
capable of leveraging sparse layers in order to produce a 
real speedup

• Training memory: In this approach, finding the winning 
tickets requires training the full network
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Pruned network

Full training
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Train and compress
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Train and compress / train while compressing
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Layer factorization
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𝑊 𝑋

𝑌⊤

𝑛 ×  𝑟

𝑟 
×  𝑚

𝑛 
×  𝑚

Storage and operations cost:  𝑂(𝑛𝑚)       𝑂(𝑛𝑟 + 𝑚𝑟)

NN:   𝑓 𝑥 = ℎ𝑁 ℎℓ+1 = 𝑓ℓ ℎℓ; 𝑊ℓ, 𝑏ℓ  ℎ0 = 𝑥 
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Training factorized layers



Direct training of low-rank factorization

Fix the rank of the layers written as 𝑊 = 𝑋𝑌⊤ and interpret the loss 𝐿 
as a function of the factors:

min
𝑊∼𝑛×𝑛

𝐿(𝑥; 𝑊) ⟶ min
𝑋,𝑌∼𝑛×𝑟

𝐿 𝑥; 𝑋, 𝑌  

Then train in parallel with respect to the two small variables 
 

𝑋 ← sgd[∇𝑋𝐿 𝑥; 𝑋, 𝑌 ];        𝑌 ← sgd[∇𝑌𝐿 𝑥; 𝑋, 𝑌 ]
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Fine-tuning LLMs: 𝑓ℓ(𝑥; 𝑊ℓ + 𝐴ℓ𝐵ℓ)
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…and also (pre)training
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Drawbacks

• It is highly sensitive to initialization 
• Typically requires a full warm-up pass: train the full model for some epochs at the 

beginning and then compress with a (regularized) SVD

• It is highly sensitive to small singular values at initialization and during 
training

• Convergence can be slow

• It requires to manually adjust the ranks
• Typically requires leaving 𝑘 initial layers untouched; test for various choices of 𝑟
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Training exploiting the Riemannian geometry

• When the factorization model forms a 
smooth manifold ℳone can “do better”

• Our approach:
Project the gradient flow

ሶ𝑊 𝑡 = −∇𝐿 𝑥; 𝑊 𝑡

onto the tangent plane at each point 
and then retract to ℳ when integrating
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𝑊𝑘+1 = 𝑈𝑘+1𝑆𝑘+1𝑉𝑘+1
𝑇

−∇𝑊𝐿



USV parametrization 

• ℳ = 𝑈𝑆𝑉⊤: 𝑈, 𝑉 ∼ 𝑛 × 𝑟 orthonormal , 𝑆 ∼ 𝑟 × 𝑟 invertible
Smooth Riemannian manifold

• 𝑃𝑋 = projection on the tangent plane of ℳ at the point 𝑋 ∈ ℳ

• Projected gradient flow:

ሶ𝑊 𝑡 = −𝑃𝑊 𝑡 ∇𝐿 𝑥; 𝑊 𝑡
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System of ODEs for the factors

• When 𝑊 = 𝑈𝑆𝑉⊤ ∈ ℳ, the projected gradient flow coincides with

൞

ሶ𝑆 = −𝑈⊤∇𝑊𝐿 𝑊 𝑉
ሶ𝑈 = − 𝐼 − 𝑈𝑈⊤ ∇𝑊𝐿 𝑊 𝑉𝑆−1

ሶ𝑉 = − 𝐼 − 𝑉𝑉⊤ ∇𝑊𝐿 𝑊 𝑇𝑈𝑆−⊤

However:

• Equation is stiff when the singular values of 𝑆 are small

• It requires the gradient with respect to the full weight 𝑊
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Change of parametrization

KLS trick: 
Change variables: 𝐾 𝑡 = 𝑈 𝑡 𝑆(𝑡), 𝐿 𝑡 = 𝑉 𝑡 𝑆 𝑡 ⊤

൞

ሶ𝑆 = −∇𝑆𝐿 𝑈𝑆𝑉⊤

ሶ𝐾 = −∇𝐾𝐿 𝐾𝑉⊤

ሶ𝐿 = −∇𝐿𝐿 𝑈𝐿 ⊤

Note that 𝐾, 𝐿 have the same thin shape as 𝑈, 𝑉. 

Drawback: there is an implicit dependence on 𝑈 and 𝑉 → it is not obvious 
how one can run the updates in parallel 
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An unconventional DLR integrator, Ceruti, Lubich, BIT 2022 



Rank-adaptive DLRT algorithm

Based on this system of ODEs, we propose a rank-adaptive 
training algorithm that simultaneously updates 𝑈, 𝑆, 𝑉 and has 

several theoretical guarantees
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Rank-adaptive DLRT scheme

1. In parallel:

• 𝐾 ← 𝐬𝐠𝐝 ∇𝑈𝐿 𝑥b; 𝑈𝑆𝑉⊤ ;      𝐿 ← 𝐬𝐠𝐝 ∇𝑉𝐿 𝑥b; 𝑈𝑆𝑉⊤ ;    𝑆 ← 𝐬𝐠𝐝 ∇𝑆𝐿 𝑥b; 𝑈𝑆𝑉⊤  

2. In parallel: ෩𝑈 ← 𝐛𝐚𝐬𝐢𝐬_𝐚𝐮𝐠 𝑈, 𝐾    ෩𝑉 ← 𝐛𝐚𝐬𝐢𝐬_𝐚𝐮𝐠 𝑉, 𝐿  

3. Form the augmented ෩𝑆 ← 𝑆 𝐿⊤ ෩𝑉 
෩𝑈⊤𝐾 0

∼ 2𝑟 ×  2𝑟

4. Compress ෩𝑆 to its best 𝜏 low-rank approximation

𝑆 ← matrix 𝑍 with smallest rank such that ෩𝑆 − 𝑍 ≤ 𝜏 ෩𝑆 

and form the new 𝑈, 𝑉 accordingly
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GeoLoRA: Geometric integration for parameter-efficient ft, arXiv, 2024



• When we do the basis augmentation we need to:
• Perform a QR decomposition of 𝑛 × 𝑟 matrix – cost: 𝑂(𝑛𝑟2)

• For the best low-rank approximation up to error 𝜏, we need to:
• Perform an SVD decomposition of 𝑟 × 𝑟 matrix – cost: 𝑂(𝑟3)
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Training cost (per iteration)

𝑾 ∼ 𝒏 × 𝒏 Cost per iteration Memory storage

Direct 𝑂(2𝑛𝑟) 𝑂(2𝑛𝑟)

DLRT 𝑂 𝑛𝑟2 + 𝑂 𝑟3 + 𝑂(2𝑛𝑟) 𝑂(2𝑛𝑟 + 𝑟2)

Full 𝑂(𝑛2) 𝑂(𝑛2)
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Analysis



Theorem (Descent and convergence using SGD)
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Assume the loss 𝐿 is smooth and bounded. Let 𝑊𝑘 = 𝑈𝑘𝑆𝑘𝑉𝑘
𝑇 be the 

weight matrices computed after 𝑘 training iterations using SGD with 
learning rate 𝜆𝑘  and truncation parameter 𝜏𝑘.

Then:

 𝔼𝑘+1 𝐿 𝑊𝑘+1 ≤ 𝐿 𝑊𝑘 − 𝜆𝑘 1 −
𝐿𝜆𝑘

2
𝔼𝑘 𝑃𝑊𝑘

∇𝜉𝑘
𝐿 𝑊𝑘

2
+ 𝐿𝜏𝑘



Theorem (Descent and convergence using SGD)
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Moreover, assume:

1. the learning rate sequence satisfies the Robin-Monro conditions 

     σ𝑘 𝜆𝑘 = +∞ σ𝑘 𝜆𝑘
2 < +∞ 

2. the rank distribution stabilizes fast enough, namely

       σ𝑘 𝑊𝑘 − ෩𝑊𝑘
2

< +∞ 

where ෩𝑊𝑘 is the matrix before rank adjustment. 

⟹  liminf
𝑘

 𝔼𝑘 𝑃𝑊𝑘
∇𝜉𝑘

𝐿 𝑊𝑘
2

= 0



Rank evolution (feed forward fully connected) 
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Theorem (Error-bound when using GD)
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Assume:
• 𝑊 𝑡   solution of the full-model gradient flow at time 𝑡
• 𝑊𝑘 = 𝑈𝑘𝑆𝑘𝑉𝑘

⊤
 computed after 𝑘 training iterations of DLRT, with GD 

using learning rate 𝜆 and error tolerance 𝜏 

If the gradient ∇𝐿(𝑊(𝑡)) is 𝜖-close to ℳ𝑟𝑘
 at time 𝑡 = 𝑘𝜆, then 

𝑊 𝑡 − 𝑈𝑘𝑆𝑘𝑉𝑘
𝑇 ≤ 𝑐1𝜖 + 𝑐2𝜆 + 𝑐3𝜏/𝜆



Winning ticket interpretation
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An informal way to interpret the previous theorem:

If there exists a low-rank winning ticket (a highly-performing 
low-rank subnetwork) then the proposed DLRT scheme well 
approximates it 



Is there a good low-rank subnet?
Extensive recent work on low-rank implicit bias

• Arora, Cohen, Hu, Luo, Implicit regularization in deep matrix factorization, 
NeurIPS 2019

• Singh, Bachmann, Hofmann. Analytic insights into structure and rank of neural 
network Hessian maps, NeurIPS 2021

• Feng, Zheng, Huang, Zhao, Jordan, Zha, Rank Diminishing in Deep Neural 
Networks, NeurIPS 2022

• Huh, Mobahi, Zhang, Cheung, Agrawal, Isola, The low-rank simplicity bias in 
deep networks, TMLR 2023

• Chou, Gieshoff, Maly, Rauhut, Gradient descent for deep matrix factorization: 
Dynamics and implicit bias towards low rank, Appl Harmonic Analysis, 2024

• Galanti, Siegel, Gupte, Poggio, SGD and Weight Decay Provably Induce a Low-
Rank Bias in Deep Neural Networks, 2024
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Majority of recent theory is for linear networks

[Bah, Rauhut, Terstiege, Westdickenberg, Deep linear neural networks: 
Riemannian gradient flows and convergence to global minimizers, 2022.]

Deep linear network with 𝑁 layers: 𝑓𝜃 𝑥 = 𝑊𝑁𝑊𝑁−1 ⋯ 𝑊2𝑊1𝑥

Thm: (Training on low-rank manifold and full training coincide)

• 𝐿 be the square loss 𝐿 𝜃 = 𝑓𝜃 𝑥 − 𝑦 2 

• 𝑊∗ = 𝑊𝑁
∗𝑊𝑁−1

∗ ⋯ 𝑊2
∗𝑊1

∗ be s.t. 𝑊𝑖
∗ = argmin 𝐿 𝜃

Then, if rank 𝑊∗ = 𝑟, we have 𝑊𝑖
∗ = argminrank 𝑊𝑖=𝑟𝐿 𝜃
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Theorem (Neural Rank Collapse)

Given a dataset 𝒳 ⊆ ℝ𝑑 let

TCV 𝑟 = min
𝐶1,…,𝐶𝑟⊆𝒳

∪𝑖𝐶𝑖=𝒳

෍

𝑖=1

𝑟

෍

𝑥∈𝐶𝑖

𝑥 − 𝜇 𝐶𝑖
2

and let 𝑊ℓ be a stationary point of any FFNN trained with 𝐿 + 𝜆 𝑊 2. Then,

min
rank(𝑍)≤𝑟

𝑊ℓ − 𝑍 2 ≤ 𝐶ℓ min
𝑘<ℓ

TCV 𝒳𝑘, 𝑟

𝜆

where 𝒳𝑘 is the output of layer 𝑘.   In other words: 𝑊ℓ = 𝑅 𝑟 + small err
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4-layer auto encoder

𝒳 = 10 Gaussian 
blobs with variance 𝜎2

⇓
TCV 𝒳, 10 = 𝜎2

⇓
𝑊ℓ = 𝑟𝑎𝑛𝑘10 + 𝐸

𝐸 = 𝑂 𝜎2/𝜆



Tensor kernels 

Almost everything transfers to the tensor case. 

For example, consider a conv kernel

(𝑊 ∗ 𝑋)(𝑖1, 𝑖2, 𝑖3, 𝑖4)  = ෍

𝑗2,𝑗3,𝑗4

𝑊(𝑖2, 𝑗2, 𝑗3, 𝑗4)𝑋(𝑖1, 𝑗2, 𝑖3 − 𝑗3, 𝑖4 − 𝑗4)

• Two possibilities: (a) matricization, (b) tensor factorization
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CNN via tensor factorizations

It is known that tensor factorizations work well on CNNs
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CP

𝑇 = ෍

𝑖

𝑤𝑖 ⊗ 𝑥𝑖 ⊗ 𝑦𝑖 ⊗ 𝑧𝑖

• Lebedev,Ganin,Rakhuba,Oseledets,Lempitsky, 
ICLR 2015

• Astrid, Lee, BigComp 2017

• Phan, Sobolev, Sozykin, Ermilov, Gusak, 
Tichavský, Glukhov, et al, ECCV, 2020

Tucker

𝑇
= 𝐶 ×1 𝑈1 ×2 𝑈2 ×3 𝑈3 ×4 𝑈4

• Kim, Park, Yoo, Choi, Yang, Shin, ICLR 
2016

• Kossaifi, Bulat, Tzimiropoulos, Pantic, 
CVPR 2019

• Song, Zhang, Li, ICMLT 2020



TDLRT

Tucker decomposition forms a smooth manifold, so we can 
define the tangent plane there and adapt the algorithm using 
HOSVD in place of the  classical SVD 
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Experimental evaluation



min
𝑤

𝑊target − 𝑊
2

40

𝑊 ∼ 5000 × 5000, rank 𝑊 = 5, 𝜆 = 0.1, Initial rank = 50

AdaLoRA imposes orthogonality on 𝑈, 𝑉 adding penalty terms 𝑈⊤𝑈 − 𝐼 2



Compression rate behavior (FFFC)
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LeNet
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Comparison with direct factorization descent
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CIFAR10
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GLUE benchmark (fine-tuning)
General Language Understanding Evaluation
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ViT and Stable Diffusion
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Time and sensitivity to singular values
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Conclusions

• Large/deep nets tend to be (approximately) low-rank

• Training low-rank factors is not necessarily straightforward

• We propose a particular Riemannian optimization strategy (DLRT) that 
has several theoretical guarantees

• DLRT outperforms default gradient descent on the factorization 𝑋𝑌⊤ 
both in the martrix and the tensor Tucker case
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Thank you!

• [NeurIPS22] Low-rank lottery tickets: finding efficient low-
rank neural networks via matrix differential equations 

• [NeurIPS23] Robust low-rank training via approximate 
orthonormal constraints

• [NeurIPS24] Geometry-aware training of factorized layers 
in tensor Tucker format

• [arXiv] Neural rank collapse in feed-forward networks

• [arXiv] GeoLoRA: Geometric integration for parameter-
efficient fine-tuning
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