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A toy example

x1

x2

f1(x1, x2) = 54x31 − 54x21x2 + 8x21 + 18x1x
2
2 + 16x1x2 − 2x32 + 8x22 + 8x2 + 1,

f2(x1, x2) = −27x31 + 27x21x2 − 24x21 − 9x1x
2
2 − 48x1x2 − 15x1 + x32 − 24x22 − 19x2 − 3
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Decoupling multivariate functions using tensors

History

Computation

Applications
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Waring’s problem (1770)

Every natural number can be represented as
the sum of at most 4 squares, 9 cubes, or 19 fourth powers.

30 = 52 + 22 + 12

30 = 33 + 13 + 13 + 13

30 = 24 + 14 + . . .+ 14

Hilbert–Waring theorem, 1909:

∀k ∈ N,∃s ∈ N : ∀n ∈ N : n =
∑
i≤s

aki , ai ∈ N, i = 1, . . . , s.
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Waring’s problem for homogeneous polynomials

Decompose a homogeneous multivariate polynomial f(x1, . . . , xm)
of degree d as

f(x1, . . . , xm) =

r∑
i=1

ui(v1ix1 + · · ·+ vmixm)d;

r is called the Waring rank.
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Waring’s problem for a set of non-homogeneous
polynomials
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f(x) = Ug(VTx)
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We compute the decomposition by a first-order approach

If

f(x) = Ug(VTx)

,

then

[
∂fi(x)

∂xj

]
︸ ︷︷ ︸

Jf (x)

= U

 g′1(v
T
1 x) 0

. . .
0 g′r(v

T
r x)

VT .

▶ Collect Jacobian matrices J
(1)
f ,J

(2)
f ,J

(3)
f ,J

(4)
f ,J

(5)
f , . . .

and diagonalize them simultaneously

Tool: Canonical Polyadic Decomposition (CPD)

=
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vr
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Algorithm

1. Construct tensor of Jacobians
Jf =

{
J
(1)
f ,J

(2)
f ,J

(3)
f ,J

(4)
f ,J

(5)
f , . . .

}
2. CPD of Jf gives U, V and H

3. Retrieve coefficients of gi(·) from y(k) = U
[
gi(v

T
i x

(k))
]

(solving linear system)

=

=

U
V

u1

v1

h1

+ . . . +
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vr

hr

10



Variations of the main problem
are useful in various contexts

▶ Scalar functions

→ second-order (Hessian) approach

▶ Uniqueness, noise reduction
→ parametrization of the internal functions
→ joint decompositions (combining Jacobians and Hessians)

▶ Meaningful multivariate internal functions
→ block-term decomposition

▶ Multiple layers
→ ParaTuck-Z decomposition
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– System identification (2)

– Neural networks
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Block-oriented models provide a good trade-off
between simplicity and descriptive power
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Block-oriented models:
parameter estimation

Step 1: estimate the parameters of the LTI blocks
Step 2: fit a multivariate polynomial
Step 3: decouple the multivariate polynomial
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The impulse response completely characterizes
linear dynamical systems

h
u(t) y(t)
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The Volterra kernels completely characterize
nonlinear dynamical systems

Hi

u(t) y(t)
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The Volterra kernels completely characterize
nonlinear dynamical systems

Hi

u(t) y(t)

Volterra series are polynomials
of time-shifted input signals

y(t) =
∑
i

∑
τ1,...,τi

Hi(τ1, . . . , τi)︸ ︷︷ ︸
kernels

u(t− τ1) · · ·u(t− τi)︸ ︷︷ ︸
time-shifted inputs
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Decoupling Volterra representations
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Neural networks with one layer are decoupled functions
but can be compressed using flexible activation functions

2z21 − 3z1 + 1

2z21 − 3z1 + 1
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Neural networks with two layers can be compressed
to one layer with flexible activation functions

2z21 − 3z1 + 1

2z21 − 3z1 + 1
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Neural networks with multiple layers can be compressed
to one layer with flexible activation functions
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Neural networks with multiple layers can be compressed
to two layers with flexible activation functions
using ParaTuck-2

2z21 − 3z1 + 1

2z21 − 3z1 + 1

2z21 − 3z1 + 1

2z21 − 3z1 + 1

• Multilayer Tensor-based Neural Network Compression
with Flexible Activation Functions

• A lifting approach to ParaTuck-2 tensor decompositions
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