
Decoupling multivariate functions using tensors

Mariya Ishteva

November 26, 2024



A toy example

x1

x2

f1(x1, x2) = 54x31 − 54x21x2 + 8x21 + 18x1x
2
2 + 16x1x2 − 2x32 + 8x22 + 8x2 + 1,

f2(x1, x2) = −27x31 + 27x21x2 − 24x21 − 9x1x
2
2 − 48x1x2 − 15x1 + x32 − 24x22 − 19x2 − 3

y1

y2

↕

x1

x2

[
−2 −2
3 −1

] 2z21 − 3z1 + 1
z1

z32 − z2
z2

[
1 2

−3 −1

] y1

y2

2



A toy example

x1

x2

f1(x1, x2) = 54x31 − 54x21x2 + 8x21 + 18x1x
2
2 + 16x1x2 − 2x32 + 8x22 + 8x2 + 1,

f2(x1, x2) = −27x31 + 27x21x2 − 24x21 − 9x1x
2
2 − 48x1x2 − 15x1 + x32 − 24x22 − 19x2 − 3

y1

y2

↕

x1

x2

[
−2 −2
3 −1

] 2z21 − 3z1 + 1
z1

z32 − z2
z2

[
1 2

−3 −1

] y1

y2

2



Based on joint work with

Philippe Dreesen

Konstantin Usevich

Joppe De Jonghe

Johan Schoukens

Koen Tiels, Maarten Schoukens, David Westwick,
Ivan Markovsky, Gabriel Hollander, Thomas Goossens,
Yassine Zniyed, André de Almeida, . . .

3



Decoupling multivariate functions using tensors

History

Computation

Applications

4



Waring’s problem (1770)

Every natural number can be represented as
the sum of at most 4 squares, 9 cubes, or 19 fourth powers.

30 = 52 + 22 + 12

30 = 33 + 13 + 13 + 13

30 = 24 + 14 + . . .+ 14

Hilbert–Waring theorem, 1909:

∀k ∈ N,∃s ∈ N : ∀n ∈ N : n =
∑
i≤s

aki , ai ∈ N, i = 1, . . . , s.

5



Waring’s problem for homogeneous polynomials

Decompose a homogeneous multivariate polynomial f(x1, . . . , xm)
of degree d as

f(x1, . . . , xm) =

r∑
i=1

ui(v1ix1 + · · ·+ vmixm)d;

r is called the Waring rank.

6



Waring’s problem for a set of non-homogeneous
polynomials

x1

x2

f1(x1, x2) = 54x31 − 54x21x2 + 8x21 + 18x1x
2
2 + 16x1x2 − 2x32 + 8x22 + 8x2 + 1,

f2(x1, x2) = −27x31 + 27x21x2 − 24x21 − 9x1x
2
2 − 48x1x2 − 15x1 + x32 − 24x22 − 19x2 − 3

y1

y2

↕

x1

x2

[
−2 −2
3 −1

] 2z21 − 3z1 + 1
z1

z32 − z2
z2

[
1 2

−3 −1

] y1

y2

f(x) = Ug(VTx)

7



Decoupling multivariate functions using tensors

History

Computation

Applications

8



We compute the decomposition by a first-order approach

If

f(x) = Ug(VTx)

,

then

[
∂fi(x)

∂xj

]
︸ ︷︷ ︸

Jf (x)

= U

 g′1(v
T
1 x) 0

. . .
0 g′r(v

T
r x)

VT .

▶ Collect Jacobian matrices J
(1)
f ,J

(2)
f ,J

(3)
f ,J

(4)
f ,J

(5)
f , . . .

and diagonalize them simultaneously

Tool: Canonical Polyadic Decomposition (CPD)

=

=

U
V

u1

v1

h1

+ . . . +

ur

vr

hr

9



We compute the decomposition by a first-order approach

If f(x) = Ug(VTx) ,

then

[
∂fi(x)

∂xj

]
︸ ︷︷ ︸

Jf (x)

= U

 g′1(v
T
1 x) 0

. . .
0 g′r(v

T
r x)

VT .

▶ Collect Jacobian matrices J
(1)
f ,J

(2)
f ,J

(3)
f ,J

(4)
f ,J

(5)
f , . . .

and diagonalize them simultaneously

Tool: Canonical Polyadic Decomposition (CPD)

=

=

U
V

u1

v1

h1

+ . . . +

ur

vr

hr

9



We compute the decomposition by a first-order approach

If f(x) = Ug(VTx) ,

then

[
∂fi(x)

∂xj

]
︸ ︷︷ ︸

Jf (x)

= U

 g′1(v
T
1 x) 0

. . .
0 g′r(v

T
r x)

VT .

▶ Collect Jacobian matrices J
(1)
f ,J

(2)
f ,J

(3)
f ,J

(4)
f ,J

(5)
f , . . .

and diagonalize them simultaneously

Tool: Canonical Polyadic Decomposition (CPD)

=

=

U
V

u1

v1

h1

+ . . . +

ur

vr

hr

9



We compute the decomposition by a first-order approach

If f(x) = Ug(VTx) ,

then

[
∂fi(x)

∂xj

]
︸ ︷︷ ︸

Jf (x)

= U

 g′1(v
T
1 x) 0

. . .
0 g′r(v

T
r x)

VT .

▶ Collect Jacobian matrices J
(1)
f ,J

(2)
f ,J

(3)
f ,J

(4)
f ,J

(5)
f , . . .

and diagonalize them simultaneously

Tool: Canonical Polyadic Decomposition (CPD)

=

=

U
V

u1

v1

h1

+ . . . +

ur

vr

hr

9



Algorithm

1. Construct tensor of Jacobians
Jf =

{
J
(1)
f ,J

(2)
f ,J

(3)
f ,J

(4)
f ,J

(5)
f , . . .

}
2. CPD of Jf gives U, V and H

3. Retrieve coefficients of gi(·) from y(k) = U
[
gi(v

T
i x

(k))
]

(solving linear system)

=

=

U
V

u1

v1

h1

+ . . . +

ur

vr

hr

10



Variations of the main problem
are useful in various contexts

▶ Scalar functions

→ second-order (Hessian) approach

▶ Uniqueness, noise reduction
→ parametrization of the internal functions
→ joint decompositions (combining Jacobians and Hessians)

▶ Meaningful multivariate internal functions
→ block-term decomposition

▶ Multiple layers
→ ParaTuck-Z decomposition

11



Variations of the main problem
are useful in various contexts

▶ Scalar functions
→ second-order (Hessian) approach

▶ Uniqueness, noise reduction
→ parametrization of the internal functions
→ joint decompositions (combining Jacobians and Hessians)

▶ Meaningful multivariate internal functions
→ block-term decomposition

▶ Multiple layers
→ ParaTuck-Z decomposition

11



Variations of the main problem
are useful in various contexts

▶ Scalar functions
→ second-order (Hessian) approach

▶ Uniqueness, noise reduction

→ parametrization of the internal functions
→ joint decompositions (combining Jacobians and Hessians)

▶ Meaningful multivariate internal functions
→ block-term decomposition

▶ Multiple layers
→ ParaTuck-Z decomposition

11



Variations of the main problem
are useful in various contexts

▶ Scalar functions
→ second-order (Hessian) approach

▶ Uniqueness, noise reduction
→ parametrization of the internal functions
→ joint decompositions (combining Jacobians and Hessians)

▶ Meaningful multivariate internal functions
→ block-term decomposition

▶ Multiple layers
→ ParaTuck-Z decomposition

11



Variations of the main problem
are useful in various contexts

▶ Scalar functions
→ second-order (Hessian) approach

▶ Uniqueness, noise reduction
→ parametrization of the internal functions
→ joint decompositions (combining Jacobians and Hessians)

▶ Meaningful multivariate internal functions

→ block-term decomposition

▶ Multiple layers
→ ParaTuck-Z decomposition

11



Variations of the main problem
are useful in various contexts

▶ Scalar functions
→ second-order (Hessian) approach

▶ Uniqueness, noise reduction
→ parametrization of the internal functions
→ joint decompositions (combining Jacobians and Hessians)

▶ Meaningful multivariate internal functions
→ block-term decomposition

▶ Multiple layers
→ ParaTuck-Z decomposition

11



Variations of the main problem
are useful in various contexts

▶ Scalar functions
→ second-order (Hessian) approach

▶ Uniqueness, noise reduction
→ parametrization of the internal functions
→ joint decompositions (combining Jacobians and Hessians)

▶ Meaningful multivariate internal functions
→ block-term decomposition

▶ Multiple layers

→ ParaTuck-Z decomposition

11



Variations of the main problem
are useful in various contexts

▶ Scalar functions
→ second-order (Hessian) approach

▶ Uniqueness, noise reduction
→ parametrization of the internal functions
→ joint decompositions (combining Jacobians and Hessians)

▶ Meaningful multivariate internal functions
→ block-term decomposition

▶ Multiple layers
→ ParaTuck-Z decomposition

11



Decoupling multivariate functions using tensors

History

Computation

Applications

– System identification (2)

– Neural networks

12



Block-oriented models provide a good trade-off
between simplicity and descriptive power

13



Block-oriented models provide a good trade-off
between simplicity and descriptive power

13



Block-oriented models provide a good trade-off
between simplicity and descriptive power

13



Block-oriented models provide a good trade-off
between simplicity and descriptive power

13



Block-oriented models:
parameter estimation

Step 1: estimate the parameters of the LTI blocks
Step 2: fit a multivariate polynomial
Step 3: decouple the multivariate polynomial

13



Decoupling multivariate functions using tensors

History

Computation

Applications

– System identification (2)

– Neural networks

14



The impulse response completely characterizes
linear dynamical systems

h
u(t) y(t)

15



The Volterra kernels completely characterize
nonlinear dynamical systems

Hi

u(t) y(t)

16



The Volterra kernels completely characterize
nonlinear dynamical systems

Hi

u(t) y(t)

Volterra series are polynomials
of time-shifted input signals

y(t) =
∑
i

∑
τ1,...,τi

Hi(τ1, . . . , τi)︸ ︷︷ ︸
kernels

u(t− τ1) · · ·u(t− τi)︸ ︷︷ ︸
time-shifted inputs

16



Decoupling Volterra representations

17



Decoupling multivariate functions using tensors

History

Computation

Applications

– System identification

– Neural networks

18



Neural networks with one layer are decoupled functions
but can be compressed using flexible activation functions

2z21 − 3z1 + 1

2z21 − 3z1 + 1

19



Neural networks with two layers can be compressed
to one layer with flexible activation functions

2z21 − 3z1 + 1

2z21 − 3z1 + 1

20



Neural networks with two layers can be compressed
to one layer with flexible activation functions

2z21 − 3z1 + 1

2z21 − 3z1 + 1

20



Neural networks with multiple layers can be compressed
to one layer with flexible activation functions

2z21 − 3z1 + 1

2z21 − 3z1 + 1

21



Neural networks with multiple layers can be compressed
to one layer with flexible activation functions

2z21 − 3z1 + 1

2z21 − 3z1 + 1

21



Neural networks with multiple layers can be compressed
to two layers with flexible activation functions
using ParaTuck-2

2z21 − 3z1 + 1

2z21 − 3z1 + 1

2z21 − 3z1 + 1

2z21 − 3z1 + 1

• Multilayer Tensor-based Neural Network Compression
with Flexible Activation Functions

• A lifting approach to ParaTuck-2 tensor decompositions

22



Decoupling multivariate functions using tensors

History

Computation

Applications

23



A toy example

x1

x2

f1(x1, x2) = 54x31 − 54x21x2 + 8x21 + 18x1x
2
2 + 16x1x2 − 2x32 + 8x22 + 8x2 + 1,

f2(x1, x2) = −27x31 + 27x21x2 − 24x21 − 9x1x
2
2 − 48x1x2 − 15x1 + x32 − 24x22 − 19x2 − 3

y1

y2

↕

x1

x2

[
−2 −2
3 −1

] 2z21 − 3z1 + 1
z1

z32 − z2
z2

[
1 2

−3 −1

] y1

y2

24



Decoupling multivariate functions using tensors

Mariya Ishteva

November 26, 2024


