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Artificial Neuroscience
metrology and engineering for Deep Learning using Linear 
Algebra
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• What’s the problem to solve here? 
• The lack of rigour in much Applied AI research today!
• The lack of an engineering approach to building AI models

• “Artificial brains” are being created that
• Aren’t understood because their structures are so huge that many people just give up 

trying
• Aren’t evaluated properly, relying only on benchmarking, which is an engineering not a 

cognition procedure. What about ecological validity?
• Are trained often with data that isn’t optimal for the task
• Interact with each other and with humans, proliferating without care and understanding
• Consume unsustainable amounts of energy
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So, Artificial Neuroscience
What’s in a name?

• Neuroscience - encompassing various scientific disciplines dealing with the 
structure, development, function, chemistry, pharmacology, and pathology of 
the nervous system (the brain, spinal cord, and peripheral nervous system).

• It combines physiology, anatomy, molecular biology, developmental biology, 
cytology, psychology, physics, computer science, chemistry, medicine, 
statistics, and mathematical modeling to understand the fundamental and 
emergent properties of neurons, glia and neural circuits

• We need an equivalent definition and corresponding set of disciplines. This 
goes beyond Computer Science. Several branches of mathematics are vital. 
But also Engineering, Behavioural Sciences etc, and real application domain 
expertise



Holistic understanding …
• Artificial MRI

• Linear Algebra and statistical mechanics for observing, measuring & understanding 

the learning and inference processes by observing and measuring

• Mechanistic interpretability: exposing emergent structures and neural circuits


• Experimental Artificial Neuroscience

• Beyond benchmarking: developing and testing behavioural hypotheses in 

ecologically valid experiments (incl. ablation and “surgery”)

• Designing test data to fully probe behaviours

• Exploring failure modes, not just accuracy


• Artificial Cognitive Development

• Curriculum learning, transfer learning, domain adaptation, etc


• Machine Behavioural Science

• Applying social sciences to collective behaviours of multiple AIs, AIs + humans



My journey..

• I recommended that my PhD student Rodrigo view DSP lectures from MIT (c.1978). 

• In return he recommended that I watch LA + DL lectures by Gilbert Strang. A revelation!


• From what I learned, I hypothesised about

• Developing metrics for the internal state of a NN

• Changing NN dynamics by tinkering with Singular Values

• Initialising NNs using low rank layers

• Speeding up training

• Simplifying backprop computations


• I’ve been finding more and more evidence for all these things and recently started a UK-
funded small project to build expertise



• R. Couillet, D. Trystram and T. 
Ménissier, "The Submerged Part of 
the AI-Ceberg [Perspectives]," in 
IEEE Signal Processing Magazine, 
vol. 39, no. 5, pp. 10-17, Sept. 
2022, doi: 10.1109/
MSP.2022.3182938.


• Looking at energy consumption 
due to Deep Learning
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and Thierry Ménissier

The Submerged Part of the AI-Ceberg

This article discusses the contradiction 
between the exploding energy 
demand of artificial intelligence (AI) 

and the information and communication 
(ICT) industry as a whole and the paral-
lel strong request for energy sobriety 
imposed by the need to mitigate the 
impact of climate change and the antici-
pated collapse of civilization as we know 
it. Under the form of an open reflection 
on the goods and evils of AI, the article 
raises the suggestion of a drastic change 
in the AI paradigm, more in phase with 
the vital obligation to design a more 
resilient society.

Deep learning: The new Eldorado?
Over the past decade, the considerable 
growth of the digital world, propelled 
by AI, has had spectacular effects in a 
few scientific fields, such as computer 
vision and natural language processing, 
and given rise to many new technolo-
gies and consumer products. Today, 
this development even claims to revo-
lutionize many other areas of our soci-
ety. This revolution indeed concerns 
many aspects of our lives: we (and 
humanity as a whole) are promised a 
bright future with more well-being and 
comfort, a future made of autonomous 
vehicles, sophisticated human–machine 
interfaces, humanoid robots for home 
help, smart robots for agriculture, and 
virtual visits to all the museums of the 

world with a few clicks, to name only a 
few [1], [2].

Deep neural network learning is at 
the forefront of this development and has 
spread rapidly, far beyond the confiden-
tial fields of its beginnings. In a matter of 
10 years, this specific computer science 
tool—theorized as early as the 1980s 
[3]—has reached all levels of society: in 
companies, institutions, research labo-
ratories, in virtually all engineering dis-
ciplines as well as life sciences. Easy to 
use as a black box thanks to an important 
software development effort—multiple 
“plug-and-play” solutions have been 
developed for engineers (and not only 
computer science experts), such as the 
popular TensorFlow library [4], [5]—
deep learning has effectively replaced 
“conventional” tools (particularly in 
computer vision and natural language 
processing), imposing a form of radical 
monopoly on scientific domains. The 
radical monopoly of a tool is understood 
in the sense defined by Illich [34]: it 
alters the normative system of knowl-
edge generation and sharing. Calls for 
projects, dedicated conferences, and job 
offers in data science and deep learn-
ing have recently soared and substituted 
most nondeep learning alternatives. 

Will deep learning go so far as to 
replace human beings with brain-like 
machines to solve all our problems in 
the same way as for computer-aided 
vision algorithms, which now “see” 
objects better than our own brain? 
Could Asimov’s prophetical cybernetic 

world really be on the way [6]? Of 
course, investing in deep learning and 
AI involves delegating to the machine 
the power of our decisions, which comes 
with many ethics and equity concerns 
[8]; as Stephen Hawking pessimistically 
stated in 2014, “The development of full 
artificial intelligence could spell the end 
of the human race.… It would take off 
on its own, and redesign itself at an ever-
increasing rate. Humans, who are limit-
ed by slow biological evolution, couldn’t 
compete, and would be superseded.” 
[7] (As discussed next, this seemingly 
science-fictional statement is more pro-
foundly explored by Illich [34] regard-
ing the dangers of societal dependence 
on oil and machines, induced by an 
increasing loss of common knowledge 
and know-how that are moved from the 
population to computers and machines.)  
Yet, the many promises of AI clearly 
tip the scales toward increasingly more 
investment in the field [10]. Besides, 
researchers now deeply investigate the 
question of fairness in AI to smooth out 
these thorny angles [9].

Possibly, but at what cost?
Consequently, the road is largely open 
for AI to keep growing and provide new 
opportunities. This big picture of AI, 
however, fails to question the concerns 
of costs and socioenvironmental 
impacts. The actual conception cost of 
learning algorithms is indeed rarely 
known by users or, more precisely, as we 
discuss next, hidden behind the curtain 
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AI research harms 
the planet



• Critiques familiar practice in DL 
research


• Proposes methodologies and 
roles for psychologists


• Appropriate experimentation 
delivers insights into black-box 
systems -> XAI

Artificial Psychology



• discover shape bias 
in a Comp Vis 
system by applying 
Cog Psych to a 
DNN.


• hence possibilities 
of ‘exposing hidden 
computational 
properties of DNN’


• Proceedings of the 
34 th International 
Conference on 
Machine Learning, 
Sydney, Australia, 
PMLR 70, 2017

Artificial Psychology  
#2



• Paper has many citations

• Argues for social science 

techniques to be applied to 
machine intelligence


• Out of MIT.

• Lovely web site, though no 

changes since 2019.

REVIEW
https://doi.org/10.1038/s41586-019-1138-y

Machine behaviour
 Iyad Rahwan1,2,3,34*, Manuel Cebrian1,34, Nick Obradovich1,34, Josh Bongard4, Jean-François Bonnefon5, Cynthia Breazeal1,  
Jacob W. Crandall6, Nicholas A. Christakis7,8,9,10, Iain D. Couzin11,12,13, Matthew O. Jackson14,15,16, Nicholas R. Jennings17,18,  
Ece Kamar19, Isabel M. Kloumann20, Hugo Larochelle21, David Lazer22,23,24, Richard McElreath25,26, Alan Mislove27,  
David C. Parkes28,29, Alex ‘Sandy’ Pentland1, Margaret E. Roberts30, Azim Shariff31, Joshua B. Tenenbaum32 & Michael Wellman33

Machines powered by artificial intelligence increasingly mediate our social, cultural, economic and political interactions. 
Understanding the behaviour of artificial intelligence systems is essential to our ability to control their actions, reap 
their benefits and minimize their harms. Here we argue that this necessitates a broad scientific research agenda to study 
machine behaviour that incorporates and expands upon the discipline of computer science and includes insights from 
across the sciences. We first outline a set of questions that are fundamental to this emerging field and then explore the 
technical, legal and institutional constraints on the study of machine behaviour.

I n his landmark 1969 book Sciences of the Artificial1,  
Nobel Laureate Herbert Simon wrote: “Natural 
science is knowledge about natural objects and 

phenomena. We ask whether there cannot also be 
‘artificial’ science—knowledge about artificial objects 
and phenomena.” In line with Simon’s vision, we describe the emergence 
of an interdisciplinary field of scientific study. This field is concerned 
with the scientific study of intelligent machines, not as engineering  
artefacts, but as a class of actors with particular behavioural patterns and 
ecology. This field overlaps with, but is distinct from, computer science 
and robotics. It treats machine behaviour empirically. This is akin to how 
ethology and behavioural ecology study animal behaviour by integrating 
physiology and biochemistry—intrinsic properties—with the study of 
ecology and evolution—properties shaped by the environment. Animal 
and human behaviours cannot be fully understood without the study of 
the contexts in which behaviours occur. Machine behaviour similarly 
cannot be fully understood without the integrated study of algorithms 
and the social environments in which algorithms operate2.

At present, the scientists who study the behaviours of these virtual 
and embodied artificial intelligence (AI) agents are predominantly the 
same scientists who have created the agents themselves (throughout we 
use the term ‘AI agents’ liberally to refer to both complex and simple 
algorithms used to make decisions). As these scientists create agents to 
solve particular tasks, they often focus on ensuring the agents fulfil their 
intended function (although these respective fields are much broader than 
the specific examples listed here). For example, AI agents should meet a 
benchmark of accuracy in document classification, facial recognition or 
visual object detection. Autonomous cars must navigate successfully in a 
variety of weather conditions; game-playing agents must defeat a variety 
of human or machine opponents; and data-mining agents must learn 

which individuals to target in advertising campaigns 
on social media.

These AI agents have the potential to augment 
human welfare and well-being in many ways. Indeed, 
that is typically the vision of their creators. But a 

broader consideration of the behaviour of AI agents is now critical. AI 
agents will increasingly integrate into our society and are already involved 
in a variety of activities, such as credit scoring, algorithmic trading, local 
policing, parole decisions, driving, online dating and drone warfare3,4. 
Commentators and scholars from diverse fields—including, but not 
limited to, cognitive systems engineering, human computer interaction, 
human factors, science, technology and society, and safety engineering— 
are raising the alarm about the broad, unintended consequences of AI 
agents that can exhibit behaviours and produce downstream societal 
effects—both positive and negative—that are unanticipated by their 
creators5–8.

In addition to this lack of predictability surrounding the consequences 
of AI, there is a fear of the potential loss of human oversight over intel-
ligent machines5 and of the potential harms that are associated with the 
increasing use of machines for tasks that were once performed directly 
by humans9. At the same time, researchers describe the benefits that AI 
agents can offer society by supporting and augmenting human decision- 
making10,11. Although discussions of these issues have led to many important  
insights in many separate fields of academic inquiry12, with some high-
lighting safety challenges of autonomous systems13 and others studying 
the implications in fairness, accountability and transparency (for example, 
the ACM conference on fairness, accountability and transparency (https://
fatconference.org/)), many questions remain.

This Review frames and surveys the emerging interdisciplinary field 
of machine behaviour: the scientific study of behaviour exhibited by 

1Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. 2Institute for Data, Systems & Society, Massachusetts Institute of Technology, Cambridge, MA, USA. 3Center for Humans 
and Machines, Max Planck Institute for Human Development, Berlin, Germany. 4Department of Computer Science, University of Vermont, Burlington, VT, USA. 5Toulouse School of Economics 
(TSM-R), CNRS, Université Toulouse Capitole, Toulouse, France. 6Computer Science Department, Brigham Young University, Provo, UT, USA. 7Department of Sociology, Yale University, New Haven, 
CT, USA. 8Department of Statistics and Data Science, Yale University, New Haven, CT, USA. 9Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. 10Yale Institute 
for Network Science, Yale University, New Haven, CT, USA. 11Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany. 12Department of Biology, University of 
Konstanz, Konstanz, Germany. 13Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany. 14Department of Economics, Stanford University, Stanford, 
CA, USA. 15Canadian Institute for Advanced Research, Toronto, Ontario, Canada. 16The Sante Fe Institute, Santa Fe, NM, USA. 17Department of Computing, Imperial College London, London, UK. 
18Department of Electrical and Electronic Engineering, Imperial College London, London, UK. 19Microsoft Research, Redmond, WA, USA. 20Facebook AI, Facebook Inc, New York, NY, USA. 21Google 
Brain, Montreal, Québec, Canada. 22Department of Political Science, Northeastern University, Boston, MA, USA. 23College of Computer & Information Science, Northeastern University, Boston, MA, 
USA. 24Institute for Quantitative Social Science, Harvard University, Cambridge, MA, USA. 25Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. 26Department of Anthropology, 
University of California, Davis, Davis, CA, USA. 27College of Computer & Information Science, Northeastern University, Boston, MA, USA. 28School of Engineering and Applied Sciences, Harvard 
University, Cambridge, MA, USA. 29Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA. 30Department of Political Science, University of California, San Diego, San Diego, CA, 
USA. 31Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada. 32Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 
Cambridge, MA, USA. 33Computer Science & Engineering, University of Michigan, Ann Arbor, MI, USA. 34These authors contributed equally: Iyad Rahwan, Manuel Cebrian, Nick Obradovich. 
*e-mail: irahwan@mit.edu
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http://arxiv.org/abs/2208.06894

• Aware of visualisation and 
auralisation of layers and 
weights


• Improves on this using 
formal methods from Linear 
Algebra


• Links to interpretability but 
not to controlling network 
convergence

The SVD of Convolutional Weights: A CNN Interpretability
Framework∗

Brenda Praggastis
†

Davis Brown
†

Carlos Ortiz Marrero
‡

Emilie Purvine
†

Madelyn Shapiro
†

Bei Wang
§

August 16, 2022

Abstract

Deep neural networks used for image classification often use convolutional filters to extract
distinguishing features before passing them to a linear classifier. Most interpretability literature
focuses on providing semantic meaning to convolutional filters to explain a model’s reasoning
process and confirm its use of relevant information from the input domain. Fully connected layers
can be studied by decomposing their weight matrices using a singular value decomposition, in
e↵ect studying the correlations between the rows in each matrix to discover the dynamics of
the map. In this work we define a singular value decomposition for the weight tensor of a
convolutional layer, which provides an analogous understanding of the correlations between
filters, exposing the dynamics of the convolutional map. We validate our definition using recent
results in random matrix theory. By applying the decomposition across the linear layers of
an image classification network we suggest a framework against which interpretability methods
might be applied using hypergraphs to model class separation. Rather than looking to the
activations to explain the network, we use the singular vectors with the greatest corresponding
singular values for each linear layer to identify those features most important to the network. We
illustrate our approach with examples and introduce the DeepDataProfiler library, the analysis
tool used for this study.

1 Introduction

Mathematical functions and equations provide elegant and concise expression of the relationships and
dynamics of physical systems. While we might not understand the derivation or full significance of all
the parameters in a given equation, we can still be persuaded to rely on its predictive value. We can
be shown how to interpret the equation by linking its parameters to important values in the system
and by expressing their relationships in terms of the dynamics of the system. Machine learning
practitioners have long striven to obtain this same kind of interpretability for the trained neural
networks they produce, but have had limited success due to their size and complexity [8, 10, 32].

∗
The research described in this paper is part of the MARS Initiative at Pacific Northwest National Laboratory.

It was conducted under the Laboratory Directed Research and Development Program at PNNL, a Multiprogram

National Laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract

DE-AC05-76RL01830.

†
AI & Data Analytics Division, Pacific Northwest National Laboratory, Seattle, WA 98109.

‡
AI & Data Analytics Division, Pacific Northwest National Laboratory, Richland, WA 99354; Department of

Electrical & Computer Engineering, North Carolina State University, Raleigh, NC 27607.

§
Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT 94112.
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Interpretability



• Distribution of eigenvalues is 
heavy tailed in large, well-
trained networks


• Various stages of training 
identified by changing 
distribution


• Toolbox called 
‘weightwatchers’

Deep Learning Metrology



https://distill.pub/2020/circuits/curve-circuits/

• Image processing DLs learn 
curve detectors (and higher 
order function)


• Replace identified, learning 
‘circuits’ with custom designed, 
low-power/efficient circuits


• Performance is comparable

• Potential for commoditising DL 

models

Discovering functional blocks



http://arxiv.org/abs/2004.09031Simplifying 
computation



• https://doi.org/
10.1007/978-3-030-30484-3_13

Initialising 
networks



Early original work 
Thanks to Gabriel Mason-Williams



Explore reduction in rank 

by observing grokking
• Train beyond maximum training accuracy, 

thereby increasing test accuracy 

• Transformer architecture 


• 3 tasks

• Modulo arithmetic (2)

• LLM trained on Shakespeare 

corpus
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Preliminary Results 
By Gabriel Mason-Williams
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periment and, therefore, is the most appropriate case to explore as artificial cases, such as grokking-
induced MNIST (Liu et al., 2023), could impact the training mechanisms as it is contrived and forced
example. A 2-layer transformer decoder architecture (Vaswani et al., 2017) with a width of 128 and
4 attention heads is used for all the experiments as done by Power et al. (2022).

The effect of decomposed learning is explored with the following layers and ranks:

• Token Embedding Ranks: 12, 25, 50, 74 and 99

• Position Embedding Ranks: 1, 2, 3, 4 and 5

• Multi-Head Attention Ranks: 16, 32, 64, 96 and 128

• Feed-forward Block Ranks: 16, 32, 64, 96 and 128

• Output Layer Ranks: 12, 25, 50, 74 and 99

The ranks represent approximately 12.5%, 25%, 50%, 75%, and 100% of the total ranks available
for the respective layers. This selection allows for a broad understanding of how the rank can affect
the model’s ability to learn. The value in bold is the full rank representation. The feed-forward
block rank decomposition is applied to both linear layers within the feed-forward block and both
transformer blocks. See Figure 2 for a diagrammatic depiction of the explored layers.

Token Embedding

Inputs

Position
Embedding

Multi-Head
Attention

Layer Norm

Feed-Foward
Block

Layer Norm

Layer Norm

Ouput Layer

x2
Transformer

Block

(a) Model Architecture

Q K V

Scaled Dot-
Product
Attention

Concat

Proj_out
Linear Layer

QKV_in
Linear Layer

(b) Multi-Head Attention

GeLU

Linear 
Layer

Linear
Layer

(c) Feed-forward Block

Figure 2: Model architecture: sections with a dark blue border are investigated with decomposed
learning. Figures adapted from (Vaswani et al., 2017)

The effect of dataset size on rank decomposition learning is explored using 50%, 65% and 80%
of the dataset for training with 106, 105 and 104 optimisation steps, respectively. For comparison,
a baseline model is trained typically with no layers decomposed. In all experiments, the model
is trained using the AdamW optimiser (Loshchilov & Hutter, 2019) with a learning rate of 0.001,
weight decay of 0, �1 = 0.9 and �2 = 0.98, a linear learning rate warm-up for the first ten iterations
and a batch size of 512 as done in the original paper by Power et al. (2022).

Each layer is decomposed independently for all experiments, with all other layers trained normally
unless otherwise stated; for example, in Section 5.1, the Token Embedding is decomposed, and all
other layers are represented normally.

The mean of 5 runs is reported for all plots.

4



• Various layers individually and 
collectively
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Each of these has specific properties: U is comprised of r orthonormal columns that span the
columns space of A, V is comprised of r orthonormal columns that span the row space of A and ⌃
is diagonal - its entries are known as Singular Values, �i (Strang, 2000).

We can further re-write A as a sum of simple matrices (known as rank one matrices) as

A =
rX

i=1

ui�iv
T
i (2)

where r < m < n and ui, vi are the columns of U and V , respectively. The importance of SVD
lies in the fact that it provides a way to approximate A, such that the computation of the layer
activations can be reduced with a minimal loss in accuracy and representational power. This is
known as reducing the rank of A. This is achieved by limiting the summation in (2) to k < m,
preferably k << m. Thus, the low-rank approximation is

Ãk = Ũk⌃̃kṼk
T

(3)
where Ũk is m⇥ k, ⌃̃k is an k⇥ k diagonal matrix containing only the top k largest singular values
and Ṽk

T
is k ⇥ n. k is known as the rank.

In this paper, we propose and explore the effects of decomposing A using SVD and training the
matrix product in Eq (1) as well as using the decomposition in Eq (3) for various values of k. Thus,
Decomposed Learning initialises the weight matrix, A, using standard methods, such as Xavier Uni-
form and Xavier Normal (Glorot & Bengio, 2010). The weight matrix, A, is then decomposed using
SVD, providing initial values for U , ⌃ and V T and the rank is reduced. Training proceeds without
retaining the above-mentioned SVD properties of orthonormality and diagonality, as is training in
the regime suggested by (2). Hence, for example, the trained ⌃ can be non-diagonal. After training,
Ao is recomposed as

Ao = Uo⌃oV To (4)
where Uo, ⌃o and V To are the trained matrices of U , ⌃ and V T . See Figure 1 for a diagrammatic
depiction of the process.

A

U

Σ

VT

Initialise
A

Decompose
A

Optimise on 
U, Σ, VT

Ao

Recompose
 Ao = UoΣoVTo

Uo

Σo

VTo

Figure 1: Decomposed Learning Process: Initialise A, decompose ,A, with SVD into U , ⌃ and V T ,
train on U , ⌃ and V T resulting in Uo, ⌃o and V To, recompose Ao through a linear combination of
the matrices Ao = Uo⌃oV To.

Training with a full rank-decomposition of A, i.e. U , ⌃, and V T , will increase the number of
parameters of the layer compared to training directly on A. However, low-rank decompositions of
A, with Ũr, ⌃̃r and Ṽ T

r , can result in fewer training parameters depending on the rank, r. It is
important to note that when either version is recomposed, the new matrix, Ao, will have the same
number of parameters as the original weight matrix, A.

4 EXPERIMENTAL SETUP

Decomposed learning is explored in grokking using the division mod 97 task matching the original
experimental setup by Power et al. (2022). This task is explored as it is the foundational grokking ex-

3

Training regime
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Token Embedding
99⇥128

Number of Parameters

Baseline 12672 = A
99⇥128

Rank 12 2868 = U
99⇥12

+ ⌃
12⇥12

+ V T

12⇥128

Rank 25 6300 = U
99⇥25

+ ⌃
25⇥25

+ V T

25⇥128

Rank 50 13850 = U
99⇥50

+ ⌃
50⇥50

+ V T

50⇥128

Rank 74 22274 = U
99⇥74

+ ⌃
74⇥74

+ V T

74⇥128

Rank 99 32274 = U
99⇥99

+ ⌃
99⇥99

+ V T

99⇥128

Table 1: Number of parameters for the token embedding layer in the baseline and decomposed
learning models at each rank.

5.2 POSITION EMBEDDING

The position embedding layer, Figure 4, exhibits a different effect from the token embedding layer.
Training on 50% and 65% of the dataset decompose learning takes more steps to grokk than the
baseline. However, when training on 80% of the dataset, ranks 1 and 2 start to generalise before the
baseline. However, it reaches perfect or near-perfect accuracy in approximately the same number of
steps as the baseline. Ranks 4 and 5 begin to generalise at the same point as the baseline and reach
the training accuracy at a similar number of steps as the baseline. Rank 3 has an initial increase
before the baseline, leading to a shallower increase.

Although decomposed learning increased the steps to grokk for 50% and 65% of the dataset, it did
not increase the number of steps for the model to reach a perfect or near-perfect train accuracy. The
models followed the same training accuracy trend as the baseline model. With 80% of the training
data, the decomposed learning models increased in training accuracy before the baseline model.

(a) 50% Training Data (b) 65% Training Data (c) 80% Training Data

Figure 4: Train (dotted) and test (solid) accuracy with decomposed learning on the position embed-
ding layer using ranks 1, 2, 3, 4 and 5, in comparison with the baseline (black) normally trained
model .

Table 2 shows the number of parameters associated with each rank representation of the position
embedding. Decomposed learning with 65% and 80% of the training dataset approximately reaches
the training accuracy at the same time as the baseline. This trend further supports that optimising the
weight matrix, A, as U , ⌃ and V T allows complex transformations to be learned more efficiently as
ranks one to four have fewer parameters than the baseline. A potential reason as to why decomposing
the position embedding has a marginal effect on the steps to grokk could be attributed to the fact
that the position embedding has few parameters and is not needed for near-perfect to perfect test
accuracy, see Appendix B.1, and thus has little impact of the models learning process.
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5 RESULTS

The results section compares normal training against decomposed learning on only the token embed-
ding, 5.1, position embedding 5.2, multi-head attention 5.3, feed-forward blocks 5.4, output layer
5.5 and when decomposed learning on the token embedding, multi-head attention, feed-forward
block and output layer altogether 5.6.

5.1 TOKEN EMBEDDING

The impact of decomposed learning on the token embedding layer at rank 12, 25, 50, 74 and full rank
99, compared to the normally trained model (baseline), is shown in Figure 3. This Figure, specif-
ically Figure 3a, clearly shows the grokking phenomena with the training (dotted lines) increasing
to a near-perfect accuracy between steps 102 and 103, while the test accuracy (solid lines) is still at
random accuracy. Then significantly later, between steps 104 and approximately 5 ⇥ 105, the test
accuracy sharply increases from random to perfect near-perfect. Figure 3 shows that increasing the
training dataset size reduces the number of optimisation steps required before the model can gener-
alise, reducing the steps to grokk. This observation is in line with the original paper that introduced
the phenomenon.

It’s important to note that Figure 3 shows that the size of the dataset affects the rank that can be
used in decomposed learning. This is clear when comparing the decomposed learning test accuracy
with rank 12 (blue) with 50%, Figure 3a, and 80%, Figure 3c of the training data. With 50% of the
training data, rank 12 starts to generalise later than the baseline and does not reach the same test
accuracy with 106 training steps. Whereas with 80% of the training data, rank, 12 starts to grokk
before the baseline. Irrespective of the training dataset size, decomposed learning performs better
with higher ranks. In the case of training with 80% of the dataset, Figure 3c, decomposed learning
on the token embedding can eradicate the phenomenon. It is also heavily reduced when using 65%
of the training data. This result suggests that higher ranks are needed when less representative data is
available, and as the dataset becomes more representative, the layer weight matrix can be represented
in a low-rank form.

Notably, although decomposed learning on the token embedding reduces the number of steps re-
quired for the test accuracy to reach the same accuracy as the train, it does not significantly reduce
the number of steps required for the model to reach perfect or near-perfect training accuracy.

(a) 50% Training Data (b) 65% Training Data (c) 80% Training Data

Figure 3: Train (dotted) and test (solid) accuracy with decomposed learning on the token embedding
layer using ranks 12, 25, 50, 74 and 99, in comparison with the baseline (black) normally trained
model.

The observation that higher ranks are needed when less representative data is available is further
supported when considering the parameter counts concerning the rank and baseline, Table 1. The
table shows that rank 12 and 25 have fewer parameters than the baseline. Therefore, the reduction
in steps to grokk cannot only be attributed to an increase in the number of parameters, as these
ranks reduce the steps to grokk in all dataset sizes apart from rank 12 with 50% of the training
dataset. This result suggests that optimising the weight matrix, A, as U , ⌃ and V T allows complex
transformations to be learned more efficiently, as the parameter count does not account for reduced
steps to grokk.
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Each of these has specific properties: U is comprised of r orthonormal columns that span the
columns space of A, V is comprised of r orthonormal columns that span the row space of A and ⌃
is diagonal - its entries are known as Singular Values, �i (Strang, 2000).

We can further re-write A as a sum of simple matrices (known as rank one matrices) as

A =
rX

i=1

ui�iv
T
i (2)

where r < m < n and ui, vi are the columns of U and V , respectively. The importance of SVD
lies in the fact that it provides a way to approximate A, such that the computation of the layer
activations can be reduced with a minimal loss in accuracy and representational power. This is
known as reducing the rank of A. This is achieved by limiting the summation in (2) to k < m,
preferably k << m. Thus, the low-rank approximation is

Ãk = Ũk⌃̃kṼk
T

(3)
where Ũk is m⇥ k, ⌃̃k is an k⇥ k diagonal matrix containing only the top k largest singular values
and Ṽk

T
is k ⇥ n. k is known as the rank.

In this paper, we propose and explore the effects of decomposing A using SVD and training the
matrix product in Eq (1) as well as using the decomposition in Eq (3) for various values of k. Thus,
Decomposed Learning initialises the weight matrix, A, using standard methods, such as Xavier Uni-
form and Xavier Normal (Glorot & Bengio, 2010). The weight matrix, A, is then decomposed using
SVD, providing initial values for U , ⌃ and V T and the rank is reduced. Training proceeds without
retaining the above-mentioned SVD properties of orthonormality and diagonality, as is training in
the regime suggested by (2). Hence, for example, the trained ⌃ can be non-diagonal. After training,
Ao is recomposed as

Ao = Uo⌃oV To (4)
where Uo, ⌃o and V To are the trained matrices of U , ⌃ and V T . See Figure 1 for a diagrammatic
depiction of the process.

A

U

Σ

VT

Initialise
A

Decompose
A

Optimise on 
U, Σ, VT

Ao

Recompose
 Ao = UoΣoVTo

Uo

Σo

VTo

Figure 1: Decomposed Learning Process: Initialise A, decompose ,A, with SVD into U , ⌃ and V T ,
train on U , ⌃ and V T resulting in Uo, ⌃o and V To, recompose Ao through a linear combination of
the matrices Ao = Uo⌃oV To.

Training with a full rank-decomposition of A, i.e. U , ⌃, and V T , will increase the number of
parameters of the layer compared to training directly on A. However, low-rank decompositions of
A, with Ũr, ⌃̃r and Ṽ T

r , can result in fewer training parameters depending on the rank, r. It is
important to note that when either version is recomposed, the new matrix, Ao, will have the same
number of parameters as the original weight matrix, A.

4 EXPERIMENTAL SETUP

Decomposed learning is explored in grokking using the division mod 97 task matching the original
experimental setup by Power et al. (2022). This task is explored as it is the foundational grokking ex-
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Conclusions…


