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Artificial Neuroscience

metrology and engineering for Deep Learning using Linear
Algebra

Mark Sandler 27 November 2024
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Aims of this talk

 What’s the problem to solve here?

* The lack of rigour in much Applied Al research today!

* The lack of an engineering approach to building Al models
* “Artificial brains” are being created that

 Aren’t understood because their structures are so huge that many people just give up
trying

* Aren’t evaluated properly, relying only on benchmarking, which is an engineering not a
cognition procedure. What about ecological validity?

* Are often with data that isn’t optimal for the task
* [nteract with each other and with humans, proliferating without care and understanding
* Consume unsustainable amounts of energy
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So, Artificial Neuroscience

What’s in a name?

* Neuroscience - encompassing various scientific disciplines dealing with the
structure, development, function, chemistry, pharmacology, and pathology of
the nervous system (the brain, spinal cord, and peripheral nervous system).

* |t combines physiology, anatomy, molecular biology, developmental biology,
cytology, psychology, physics, computer science, chemistry, medicine,
statistics, and mathematical modeling to understand the fundamental and
emergent properties of neurons, glia and neural circuits

 We need an equivalent definition and corresponding set of disciplines. This
goes beyond Computer Science. Several branches of mathematics are vital.
But also Engineering, Behavioural Sciences etc, and real application domain
expertise



Holistic understanding ...

* Artificial MRI

* Linear Algebra and statistical mechanics for observing, measuring & understanding
the learning and inference processes by observing and measuring

* Mechanistic interpretabllity: exposing emergent structures and neural circuits
* Experimental Artificial Neuroscience

 Beyond benchmarking: developing and testing behavioural hypotheses In
ecologically valid experiments (incl. ablation and “surgery”)

* Designing test data to fully probe behaviours
* Exploring failure modes, not just accuracy

* Curriculum learning, transfer learning, domain adaptation, etc
 Machine Behavioural Science
* Applying social sciences to collective behaviours of multiple Als, Als + humans



=/ =& IRIiNE T

My journey..

* | recommended that my PhD student Rodrigo view DSP lectures from MIT (c.1978).

* |In return he recommended that | watch LA + DL lectures by Gilbert Strang. A revelation!
* From what | learned, | hypothesised about

* Developing metrics for the internal state of a NN

 Changing NN dynamics by tinkering with Singular Values

* |nitialising NNs using low rank layers

* Speeding up training

« Simplifying backprop computations

* |’ve been finding more and more evidence for all these things and recently started a UK-
funded small project to build expertise



Al research harms
the planet

 R. Couillet, D. Trystram and T.
Meénissier, "The Submerged Part of
the Al-Ceberg [Perspectives]," in
IEEE Signal Processing Magazine,
vol. 39, no. 5, pp. 10-17, Sept.
2022, doi: 10.1109/
MSP.2022.3182938.

 Looking at energy consumption
due to Deep Learning

The Submerged Part of the Al-Ceberg

between the exploding energy

demand of artificial intelligence (Al)
and the information and communication
(ICT) industry as a whole and the paral-
lel strong request for energy sobriety
imposed by the need to mitigate the
impact of climate change and the antici-
pated collapse of civilization as we know
it. Under the form of an open reflection
on the goods and evils of Al, the article
raises the suggestion of a drastic change
in the Al paradigm, more in phase with
the vital obligation to design a more
resilient society.

This article discusses the contradiction

Deep learning: The new Eldorado?
Over the past decade, the considerable
growth of the digital world, propelled
by Al, has had spectacular effects in a
few scientific fields, such as computer
vision and natural language processing,
and given rise to many new technolo-
gies and consumer products. Today,
this development even claims to revo-
lutionize many other areas of our soci-
ety. This revolution indeed concerns
many aspects of our lives: we (and

world with a few clicks, to name only a
few [1], [2].

Deep neural network learning is at
the forefront of this development and has
spread rapidly, far beyond the confiden-
tial fields of its beginnings. In a matter of
10 years, this specific computer science
tool—theorized as early as the 1980s
[3]—has reached all levels of society: in
companies, institutions, research labo-
ratories, in virtually all engineering dis-
ciplines as well as life sciences. Easy to
use as a black box thanks to an important
software development effort—multiple
“plug-and-play” solutions have been
developed for engineers (and not only
computer science experts), such as the
popular TensorFlow library [4], [S]—
deep learning has effectively replaced
“conventional” tools (particularly in
computer vision and natural language
processing), imposing a form of radical
monopoly on scientific domains. The
radical monopoly of a tool is understood
in the sense defined by Illich [34]: it
alters the normative system of knowl-
edge generation and sharing. Calls for
projects, dedicated conferences, and job

Romain Couillet, Denis Trystram,
and Thierry Ménissier

world really be on the way [6]? Of
course, investing in deep learning and
Al involves delegating to the machine
the power of our decisions, which comes
with many ethics and equity concerns
[8]; as Stephen Hawking pessimistically
stated in 2014, ““The development of full
artificial intelligence could spell the end
of the human race.... It would take off
on its own, and redesign itself at an ever-
increasing rate. Humans, who are limit-
ed by slow biological evolution, couldn’t
compete, and would be superseded.”
[7] (As discussed next, this seemingly
science-fictional statement 1s more pro-
foundly explored by Illich [34] regard-
ing the dangers of societal dependence
on oil and machines, induced by an
increasing loss of common knowledge
and know-how that are moved from the
population to computers and machines.)
Yet, the many promises of Al clearly
tip the scales toward increasingly more
investment in the field [10]. Besides,
researchers now deeply investigate the
question of fairness in Al to smooth out
these thorny angles [9].



Artificial Psychology

e Critiques familiar practice in DL
research

 Proposes methodologies and
roles for psychologists

* Appropriate experimentation
delivers insights into black-box
systems -> XAl

Psychonomic Bulletin and Review (2021) 28:454-475
https://doi.org/10.3758/513423-020-01825-5

THEORETICAL REVIEW ")

Check for
updates

Artificial cognition: How experimental psychology can help
generate explainable artificial intelligence

J. Eric T. Taylor'2? . Graham W. Taylor-2

Accepted: 2 October 2020 / Published online: 6 November 2020
© The Psychonomic Society, Inc. 2020

Abstract

Artificial intelligence powered by deep neural networks has reached a level of complexity where it can be difficult or
impossible to express how a model makes its decisions. This black-box problem is especially concerning when the model
makes decisions with consequences for human well-being. In response, an emerging field called explainable artificial
intelligence (XAI) aims to increase the interpretability, fairness, and transparency of machine learning. In this paper, we
describe how cognitive psychologists can make contributions to XAI. The human mind 1s also a black box, and cognitive
psychologists have over 150 years of experience modeling it through experimentation. We ought to translate the methods
and rigor of cognitive psychology to the study of artificial black boxes in the service of explainability. We provide a review
of XAI for psychologists, arguing that current methods possess a blind spot that can be complemented by the experimental
cognitive tradition. We also provide a framework for research in XAl, highlight exemplary cases of experimentation within
XAI inspired by psychological science, and provide a tutorial on experimenting with machines. We end by noting the
advantages of an experimental approach and invite other psychologists to conduct research in this exciting new field.



Artificial Psychology

#2

discover shape bias
in a Comp Vis
system by applying
Cog Psych to a
DNN.

hence possibilities
of ‘exposing hidden
computational
properties of DNN’

Proceedings of the
34 th International
Conference on
Machine Learning,
Sydney, Australia,
PMLR 70, 2017

Cognitive Psychology for Deep Neural Networks:
A Shape Bias Case Study

Samuel Ritter

David G.T. Barrett

Adam Santore '  Matt M. Botvinick '

Abstract

Deep neural networks (DNNs) have advanced
performance on a wide range of complex tasks,
rapidly outpacing our understanding of the na-
ture of their solutions. While past work sought
to advance our understanding of these models,
none has made use of the rich history of problem
descriptions, theories, and experimental methods
developed by cognitive psychologists to study
the human mind. To explore the potential value
of these tools, we chose a well-established analy-
sis from developmental psychology that explains
how children learn word labels for objects, and
applied that analysis to DNNs. Using datasets
of stimuli inspired by the original cognitive psy-
chology experiments, we find that state-of-the-art
one shot learning models trained on ImageNet
exhibit a similar bias to that observed in hu-
mans: they prefer to categorize objects accord-
ing to shape rather than color. The magnitude
of this shape bias varies greatly among archi-
tecturally identical, but differently seeded mod-
els, and even fluctuates within seeds through-
out training, despite nearly equivalent classifi-
cation performance. These results demonstrate
the capability of tools from cognitive psychology
for exposing hidden computational properties of
DNNs, while concurrently providing us with a
computational model for human word learning.




Machine Behaviour

 Paper has many citations

* Argues for social science
techniques to be applied to
machine intelligence

e Qut of MIT.

* | ovely web site, though no
changes since 2019.

REVIEW

https://doi.org/10.1038/s41586-019-1138-y

Machine behaviour

Iyad Rahwan' 334+ Manuel Cebrian'**, Nick Obradovich34, Josh Bongard*, Jean-Francois Bonnefon®, Cynthia Breazeal!,
Jacob W. Crandall®, Nicholas A. Christakis”®%1° Iain D. Couzin'>'>13, Matthew O. Jackson'#!>16 Nicholas R. Jennings'"18,

Ece Kamar!®, Isabel M. Kloumann?’, Hugo Larochelle?!, David Lazer?>?324, Richard McElreath®>?¢, Alan Mislove?’,

David C. Parkes?®??| Alex ‘Sandy’ Pentland!, Margaret E. Roberts??, Azim Shariff*!, Joshua B. Tenenbaum?? & Michael Wellman??

Machines powered by artificial intelligence increasingly mediate our social, cultural, economic and political interactions.
Understanding the behaviour of artificial intelligence systems is essential to our ability to control their actions, reap
their benefits and minimize their harms. Here we argue that this necessitates a broad scientific research agenda to study
machine behaviour that incorporates and expands upon the discipline of computer science and includes insights from
across the sciences. We first outline a set of questions that are fundamental to this emerging field and then explore the
technical, legal and institutional constraints on the study of machine behaviour.



Interpretability

http://arxiv.org/abs/2208.06894 The SVD of Convolutional Weights: A CNN Interpretability
Framework™

° Aware Of Visualisation and Brenda Praggastis' Davis Brown' Carlos Ortiz Marrero? Emilie Purvine'

auralisation of layers and Madelyn Shapiro’ Bei Wang?
We|ghtS August 16, 2022

* |mproves on this using N
fo rmal methOdS from LI near Deep neural networks used for image classification often use convolutional filters to extract

AI ebra distinguishing features before passing them to a linear classifier. Most interpretability literature
g focuses on providing semantic meaning to convolutional filters to explain a model’s reasoning
process and confirm its use of relevant information from the input domain. Fully connected layers

® Ll n kS 'tO |n'te rp ret abl I |'ty but can be studied by decomposing their weight matrices using a singular value decomposition, in

effect studying the correlations between the rows in each matrix to discover the dynamics of

nOt to COntrO”Ing netWO rk the map. In this work we define a singular value decomposition for the weight tensor of a

convolutional layer, which provides an analogous understanding of the correlations between

COnve rgence filters, exposing the dynamics of the convolutional map. We validate our definition using recent
results in random matrix theory. By applying the decomposition across the linear layers of
an image classification network we suggest a framework against which interpretability methods
might be applied using hypergraphs to model class separation. Rather than looking to the
activations to explain the network, we use the singular vectors with the greatest corresponding
singular values for each linear layer to identify those features most important to the network. We
illustrate our approach with examples and introduce the DeepDataProfiler library, the analysis
tool used for this study.
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Deep Learning Metrology

Implicit Self-Regularization in Deep Neural Networks:
Evidence from Random Matrix Theory
and Implications for Learning

Charles H. Martin CHARLESQCALCULATIONCONSULTING.COM
Calculation Consulting

8 Locksley Ave, 6B

San Francisco, CA 94122

) DIStrI bUt!On C.)f elgenval ueS IS Michael W. Mahoney MMAHONEY@QSTAT.BERKELEY.EDU
h eavy tal Ied I n Iarg e, Wel I — ICSIT and Department of Statistics

University of California at Berkeley

t rai n ed n etWO rkS Berkeley, CA 94720

Abstract

® V -t f -t Random Matrix Theory (RMT) is applied to analyze the weight matrices of Deep Neural
arl O u S S ag eS O ral n I n Networks (DNNs), including both production quality, pre-trained models such as AlexNet
and Inception, and smaller models trained from scratch, such as LeNetb and a miniature-

Id ent Ifl ed by C h an g I n g AlexNet. Empirical and theoretical results clearly indicate that the DNN training process

. . . itself implicitly implements a form of Self-Reqularization, implicitly sculpting a more regu-
d ISt rl b Ut I O n larized energy or penalty landscape. In particular, the empirical spectral density (ESD) of
DNN layer matrices displays signatures of traditionally-regularized statistical models, even
in the absence of exogenously specifying traditional forms of explicit regularization, such
o TO OI b OX C al Ied as Dropout or Weight Norm constraints. Building on relatively recent results in RMT,
most notably its extension to Universality classes of Heavy-Tailed matrices, and applying
L - h h ) them to these empirical results, we develop a theory to identify 5+1 Phases of Training,
Welg twatC ers corresponding to increasing amounts of Implicit Self-Regularization. These phases can be
observed during the training process as well as in the final learned DNNs. For smaller
and /or older DNNs, this Implicit Self-Regularization is like traditional Tikhonov regular-
ization, in that there is a “size scale” separating signal from noise. For state-of-the-art
DNNs, however, we identify a novel form of Heavy-Tailed Self-Regularization, similar to
the self-organization seen in the statistical physics of disordered systems (such as clas-
sical models of actual neural activity). This results from correlations arising at all size
scales, which for DNNs arises implicitly due to the training process itself. This implicit
Self-Regularization can depend strongly on the many knobs of the training process. In
particular, we demonstrate that we can cause a small model to exhibit all 54+1 phases of
training simply by changing the batch size. Our results suggest that large, well-trained
DNN architectures should exhibit Heavy-Tailed Self-Regularization, and we discuss the
theoretical and practical implications of this.



Discovering functional blocks

https://distill.pub/2020/circuits/curve-circuits/

* Image processing DLs learn
curve detectors (and higher
order function)

* Replace identified, learning
‘circults’ with custom designed,
low-power/efficient circuits

 Performance is comparable

» Potential for commoditising DL
models

Curve Circuits

We reverse engineer a non-trivial learned algorithm

from the weights of a neural network and use its core
ideas to craft an artificial artificial neural network from
scratch that reimplements it.

Natural InceptionV1 Curve Neurons Artificial Curve Neurons
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We can compare the curve detectors in a neural

measuring how they activate to synthetic curve stimuli. We see that across a range of radii and orientations, our
artificial curve neurons approximate the natural ones.



Simplifying
computation

Learning Low-rank Deep Neural Networks via Singular Vector Orthogonality
Regularization and Singular Value Sparsification

Huanrui Yang', Minxue Tang®, Wei Wen', Feng Yan®, Daniel Hu*, Ang Li', Hai Li', Yiran Chen'
'Department of Electrical and Computer Engineering, Duke University
“Department of Electronic Engineering, Tsinghua University

SComputer Science and Engineering Department, University of Nevada, Reno
*Newport High School, Bellevue, WA

Abstract

http/ / arXiV-Org/ ab: Modern deep neural networks (DNNs) often require high

memory consumption and large computational loads. In or-
der to deploy DNN algorithms efficiently on edge or mo-
bile devices, a series of DNN compression algorithms have
been explored, including factorization methods. Factoriza-
tion methods approximate the weight matrix of a DNN layer
with the multiplication of two or multiple low-rank matri-
ces. However, it is hard to measure the ranks of DNN layers
during the training process. Previous works mainly induce
low-rank through implicit approximations or via costly sin-
gular value decomposition (SVD) process on every training
step. The former approach usually induces a high accuracy
loss while the latter has a low efficiency. In this work, we
propose SVD training, the first method to explicitly achieve
low-rank DNNs during training without applying SVD on
every step. SVD training first decomposes each layer into
the form of its full-rank SVD, then performs training directly
on the decomposed weights. We add orthogonality regular-
ization to the singular vectors, which ensure the valid form
of SVD and avoid gradient vanishing/exploding. Low-rank
is encouraged by applying sparsity-inducing regularizers
on the singular values of each layer. Singular value pruning
is applied at the end to explicitly reach a low-rank model.
We empirically show that SVD training can significantly re-
duce the rank of DNN layers and achieve higher reduction
on computation load under the same accuracy, comparing
to not only previous factorization methods but also state-of-
the-art filter pruning methods.



Singular Value Decomposition and Neural

Initialising Networks
networks

2[0000—0002—2524—1850]

Bernhard Bermeitinger’ - Tomas Hrycej', and

Siegfried Handschuh'-?

https://doi.org/
10.1007/978-3-030-30484-3_13 , , , ,
! Chair of Data Science, Institute of Computer Science

University of St.Gallen, St.Gallen, Switzerland
{bernhard.bermeitinger,tomas.hrycej,siegfried.handschuh}@unisg.ch
> University Passau, Passau, Germany
{bernhard.bermeitinger,siegfried.handschuh}@uni-passau.de

Abstract. Singular Value Decomposition (SVD) constitutes a bridge
between the linear algebra concepts and multi-layer neural networks—it
is their linear analogy. Besides of this insight, it can be used as a good
initial guess for the network parameters, leading to substantially better
optimization results.

Keywords: Singular Value Decomposition - Neural Network - Deep
Neural Network - Initialization - Optimization - Conjugate Gradient



Early original work

Thanks to Gabriel Mason-Williams
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Preliminary Results —

By Gabriel Mason-Williams [ Layer Norm ]
Explore reduction Iin rank - T N\
: : [ Layer Norm ]

by observing grokking
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thereby increasing test accuracy Block
* Transformer architecture X2

e 3 tasks [ Layer Norm ] Transformer

Block

 Modulo arithmetic (2)

Multi-Head
* LLM trained on Shakespeare Attention
corpus Position | J

Embedding -/
 Token Embedding Ranks: 12, 25, 50, 74 and 99

e Position Embedding Ranks: 1, 2, 3,4 and 5
e Multi-Head Attention Ranks: 16, 32, 64, 96 and 128

e Feed-forward Block Ranks: 16, 32, 64, 96 and 128

e Output Layer Ranks: 12, 25, 50, 74 and 99 [




Tralning regime

» Various layers individually and
collectively
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Figure 3: Train (dotted) and test (solid) accuracy with decomposed learning on the token embedding
layer using ranks 12, 25, 50, 74 and 99, in comparison with the baseline (black) normally trained

model.
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Figure 4: Train (dotted) and test (solid) accuracy with decomposed learning on the position embed-
ding layer using ranks 1, 2, 3, 4 and 5, in comparison with the baseline (black) normally trained
model .
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Computational efficiencies

To be done!

T
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 Jotal MACs & parameters per layer are ~
e K.n+m ~ (k+1)n rather than m.n

e Soideally k/n < 0.2
e Can we train as sum of rank-1?
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» GPUs are general purpose Al chips!

* Low rank structures and algorithms for efficient learning and inference
* Relationship with scalability and data set size
» explore other fast matrix-vector techniques

» Custom hardware (incl. 1 bit — well-established in Signal Processing)
* Relationship between 1 bit processing, ‘oversized’ layers & Universality

* Re-engineer identified neural circuits (Mechanistic Interpretability) with
purpose-defined sub-systems (e.g. curve detectors)

» Towards a building block approach to neural networks

» Explore virtual analog for digital equivalents to analog models of biological
neural circuits: trainability ~ optimized circuit design

* Explore Non-linear Digital Wave Filters as compact, non-linear building
blocks in new, heterogeneous DL models

... for green, explainable, commoditisable Al



Conclusions...



