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OPENGPT-X (01/2022 - 03/2025)

Multilingual. Open. European.
OpenGPT-X develops large AI language
models that enable new data-driven business
solutions and specifically address European
needs.
https://opengpt-x.de/en/

Funded by German Federal Ministry for Economic Affairs and Climate Action (BMWK).
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MODEL RELEASE

Our model was released yesterday (2024/11/26)!

https://opengpt-x.de/en/models/teuken-7b/
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TRANSFORMER-BASED LARGE LANGUAGE MODELS

Tranformers are the dominant
neural network architecture for
language models.
Become large by increasing number
of transformer layers or hidden
dimension.
General trend: More parameters→
more capabilities, given enough
data and compute resources.

Attention is all you need, A. Vaswani, N. Shazeer, N. Parmar,
J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin
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TRAINING LARGE MODELS

Training these large models needs
Lots of computational resources (GPUs!),
Lots of data.

Pretraining happens on supercomputers.

(R-U. Limbach / Forschungszentrum Jülich)

Finetuning of smaller models happens on
workstations.

NVIDIA

In both settings, you want to use limited resources efficiently.
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JUPITER: EXASCALE IN EUROPE

New supercomputer, currently being installed at Jülich Supercomputing Centre, fully
operational in 2025.
∼ 6000 nodes with 4 NVIDIA Grace-Hopper superchips each.
1018 floating point operations per second (double precision).
20× faster than current #1 in Germany (JUWELS Booster)
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GPU MEMORY REQUIREMENTS DURING TRAINING

Using the mixed-precision Adam optimizer.

12.5%

12.5%
25%

25% 25%

Parameters (BF16)
Gradients (BF16)
Momentum (F32)
Variance (FP32)
Parameters (FP32)

+ Activations, depending on sequence length and batch size.
Activations can be reduced using activation checkpointing.
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MATRICES EVERYWHERE

Parameter matrix
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Gradient matrix
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Momentum matrix

0.01 0.02 -0.01
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Variance matrix

0.1 0.15 0.2

0.05 0.12 0.18

0.22 0.25 0.3
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A layer in a neural network is represented by matrices.
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LOW-RANK APPROXIMATIONS

When a matrix has (numerical) low rank, it can be approximated well by smaller
matrices.

G

m × n

≈ L

m × k

× R⊤

k × n

Numerical low rank can be observed for gradients, momentum and variance.
→ These matrices can be compressed.
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OBSERVING LOW RANK

The singular values of a matrix describe, how well a matrix can be approximated with a
low-rank decomposition.
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OBSERVING LOW RANK

The singular values of a matrix describe, how well a matrix can be approximated with a
low-rank decomposition.

Here, a low rank decomposition with k = 100 (instead of n = 512) has an approximatiion
quality of 90%.
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after various iterations.
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EXPLOITING LOW-RANK
LoRA: Low-Rank Adaptation of Large Language Models

The weight updates of each layer are
accumulated in two low-rank matrices.
Mulitple LoRA adapters possible for multiple
fine-tuned models from one base model.
r is chosen a priori (as a hyperparameter).
Not suited for pre-training.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. “LoRA:
Low-Rank Adaptation of Large Language Models”, 2021.
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EXPLOITING LOW-RANK ANOTHER WAY
GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, Y. Tian. “GaLore: Memory-Efficient
LLM Training by Gradient Low-Rank Projection”, 2024.

Compute projection subspace every couple
of iterations
Compute full-rank gradient, then project it
Update optimizer states (Momentum,
Variance) with projected gradient.

→ Mt ,Vt ∈ Rm×ℓ, ℓ≪ n
Lower memory footprint than LoRA.
Better suited for pre-training.
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EXPLOITING LOW-RANK ANOTHER WAY
GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, Y. Tian. “GaLore: Memory-Efficient
LLM Training by Gradient Low-Rank Projection”, 2024.

Computing the whole SVD is horribly inefficient,
when all you want is an approximate basis of
range(Gt).

Member of the Helmholtz Association November 27, 2024 Slide 14



THE RANDOMIZED RANGE FINDER
The right tool for the job

N. Halko, P.-G. Martinsson, J. A. Tropp. “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions”, 2010.

For an oversampling parameter p ∈ N, 0 ≤ p ≤ r , we have

∥A−QQT A∥2 ≤
(

1 + 11
√

r ·
√

min{m,n}
)
σr−p+1

with a probability of at least 1− 6 · p−p under mild assumptions on p.
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PRELIMINARY RESULTS

Training a 60M Llama model, using rank 128, subspace computation in every step.
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THE ADAPTIVE RANDOMIZED RANGE FINDER

In later iterations, lower
rank suffices for same
approximation quality.

Idea: Fix tolerance for
subspace approximation
and compute basis vectors
iteratively.

Variant of classical
Gram-Schmidt
orthogonalization.

N. Halko, P.-G. Martinsson, J. A. Tropp. “Finding
structure with randomness: Probabilistic
algorithms for constructing approximate matrix
decompositions”, 2010.
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GPU-OPTIMIZED VERSION

In deep learning, matrices reside on GPUs, we want to use them.
Divide matrices into blocks to exloit memory locality and tensor cores.
Inspiration from GPU-accelerated QR decomposition.
Goal: Compute A = QB factorization, where Q comes from AΩ = QR, store
Householder vectors, i.e. Q =

∏
i(I − ViTiV T

i ).

V =

 |

| |

V1

V5 · · · Vk

|

| |

 , B =


– B1 –

– B2 –
...

– Bk –

 ,

T =
[
T1

T2 · · · Tk

]
V (lower triangular): contains Householder vectors
A: Used to store B.
T : Contains triangular blocks of storage-efficent QR decomposition of block reflectors
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Algorithm 1 Householder Block Adaptive Randomized Range Finder
Require: A matrix A ∈ Rm×n, a tolerance ϵ, and a block size b.

1: E ← ∥A∥F
2: B ← A
3: i ← 0
4: while E > ϵ do
5: Fill Ω ∈ Rn×b with values from a standard Gaussian distribution.
6: (Vi:j,i ,Ti)← qr(Bi:j,0:kΩ) ▷ Storage-efficient QR decomposition, geqrt
7: Bi:k ← (I − ViTiV T

i )Bi:k
8: E ← E − ∥Bi∥F
9: i ← i + 1

10: end while
11: V ← V:,0:i−1
12: B ← B0:i−1,:
13: r ← (i − 1) · b
Ensure: Rank r , Householder vectors V ∈ Rm×r , B ∈ Rr×n, T0, . . . ,Ti−1 ∈ Rb×b such that
∥A−QB∥Fro ≤ ϵ, where Q =

∏i−1
l=0(I − VlTlV T

l ).
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OVERLAP COMMUNICATION, COMPUTATION AND
RANDOM GENERATION

Queue 1 Queue 2 Queue 3
Create Ω1

V1 ← AΩ1 Create Ω2
V1,T1 ← qr(V1) V2 ← AΩ2

V2 ← (I − V1T1V T
1 )V2 A← (I − V1T1V T

1 )A Create Ω3
V2,T2 ← qr(V2) V3 ← AΩ3

V3 ← (I − V2T2V T
2 )V3 A← (I − V2T2V T

2 )A Create Ω4
V3,T3 ← qr(V3) V4 ← AΩ4

...
...

...

More operations (explicit panel update) in favor of exposed parallelism.
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FUTURE WORK

Experiments and results.

How to deal with tensor parallelism?

Other use cases for randomized rangefinder.

Relative vs. absolute stopping criterion?

How do stability results translate to randomized setting?

Two-sided projections?

Mix Gram-Schmidt and Householder?

Cholesky QR.

Other decompositions from Randomized Numerical Linear
Algebra.

Extend to higher dimensional tensors.

G

m × n

≈ L

m × k

× R⊤

k × n

Thank you for your
attention!

This work was funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the project OpenGPT-X (project no. 68GX21007D).
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