Network compression using tensor decompositions and pruning

Yassine Zniyed LIS UMR 7020, Université de Toulon, Aix-Marseille Université, CNRS

joint work with Van Tien Pham, and Thanh Phuong Nguyen

27.11.2024

Workshop on Low-rank Approximations and their Interactions with Neural Networks

Pruning 000 ow-rank approximations

IORTON approach

ONCATENATION approact

References O

Table of Contents

Deep neural networks (DNNs)

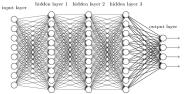
Pruning

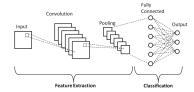
Low-rank approximations

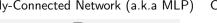
NORTON approach

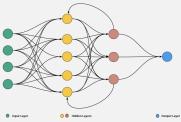
CONCATENATION approach

Examples of Neural Network Architectures









Recurrent Neural Network (RNN)

Convolutional Neural Network (CNN)

Transformer

ow-rank approximation

NORTON approach

NCATENATION approach

Overparameterization in Modern DNNs

- Modern DNNs are often overparameterized to ensure sufficient capacity for learning complex patterns.
- This results in redundancy and inefficiency, making them resource-intensive.

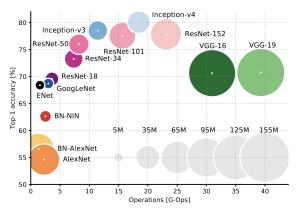


Figure : Top-1 accuracy on the ImageNet dataset vs. number of operations required for a single forward pass [*Canziani et al., 2016*].

ow-rank approximation

NORTON approach

NCATENATION approact

References O

From Overparameterization to Compression

Modern DNNs often exhibit significant redundancy :

- Many learned features across architectures (e.g., CNNs, Transformers) are overlapping or similar.
- Weight matrices and kernels often exhibit low-rank structures.
- Addressing this redundancy through compression :
 - Reduces storage and computational requirements.
 - Facilitates deployment on resource-constrained devices.
 - Improves energy efficiency and inference speed.

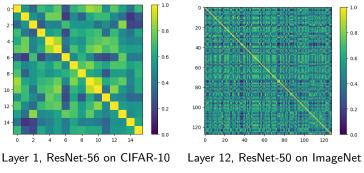


Figure : Similarity matrices (cosine distance) showing redundancy in filters

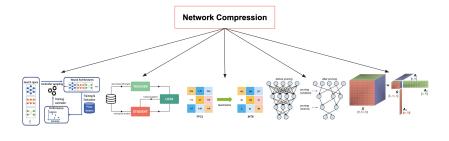
ow-rank approximation:

IORTON approach

ONCATENATION approac

References O

Compression Techniques for Neural Networks



 Neural Architecture
 Knowledge
 Quantization
 Pruning
 Low-rank

 Search
 Distillation
 Representations

Figure : Overview of key neural network compression techniques.

Pruning

ow-rank approximations

NORTON approach

ONCATENATION approact

References O

Taxonomy of DNN Pruning

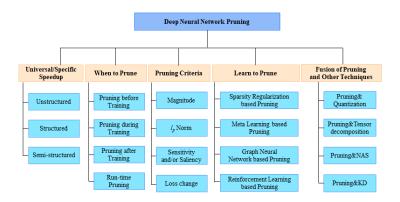


Figure : Taxonomy of pruning techniques [Chang et al., 2024].

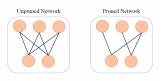
Pruning O●O w-rank approximation

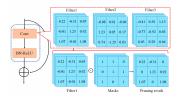
IORTON approach

ONCATENATION approac

References O

Structured vs. Unstructured Pruning





Unstr. pruning for neurons and connections

Unstr. pruning for weights and masks

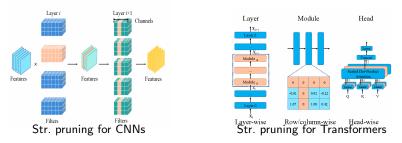


Figure : Visualization of structured vs. unstructured pruning.

Pruning 00 _ow-rank approximations 0000 NORTON approact

ONCATENATION approact

References O

When to Prune?

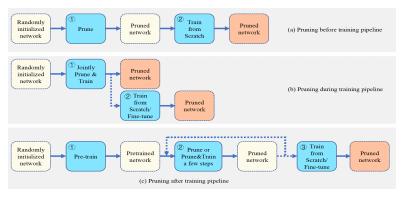


Figure : Typical pipelines of static pruning.

Low-rank approximations

IORTON approach

NCATENATION approach

References O

Weight Matrix Decomposition with SVD

- One common case of low-rank approximation involves decomposing matrix weights in DNNs using matrix decompositions, such as Singular Value Decomposition (SVD).
- This approach is widely used in architectures like Transformers and LLMs to reduce the dimensionality of matrix weights.

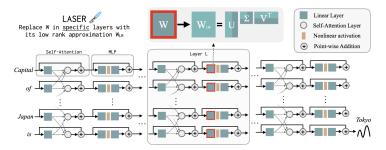


Figure : Low-rank approximation of matrix weights [Sharma et al., 2023].

Pruning 000 Low-rank approximations

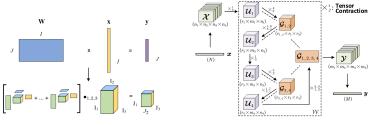
NORTON approach

ONCATENATION approac

References O

Tensorization of Weight Matrices

- Weight matrices in neural networks can be tensorized to enable efficient computations and decompositions.
- Example : The matrix-vector product can be performed in a tensorial format using :
 - A Block Term Decomposition (BTD) format.
 - A Hierarchical Tucker (HT) network structure.



BTD format [(J. Ye et al, 2018)].

HT network [(Yin et al, 2021)].

Pruning 000 Low-rank approximations

NORTON approach 000000000 ONCATENATION approac

Weight Tensor Decomposition

- Some works use **SVD** by unfolding weight tensors into matrices.
- Other works directly decompose weight tensors using tensor decomposition techniques, as illustrated below :

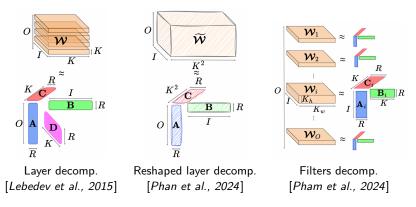


Figure : Exemples of CPD-based approaches for convolution layer decomposition.

NORTON Approach : A Hybrid Compression Method

- NORTON : Network cOmpRession through TensOr decompositions and pruNing.
- A hybrid method for CNN compression, combining :
 - CP decomposition to reduce dimensionality.
 - Pruning techniques to eliminate redundant filters.

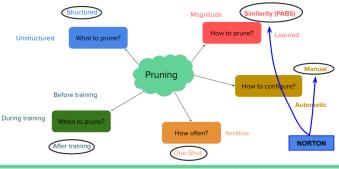


Figure : Pruning combination used in the NORTON approach.

w-rank approximations

NORTON approach

ONCATENATION approact

References O

CP Decomposition for a Single Filter

- The CPD expresses a tensor as the sum of rank-one tensors.
- For a single filter, the CP decomposition is illustrated as :

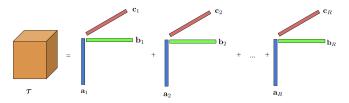


Figure : CP decomposition of a single filter into rank-one components.

- ► The CPD is applied to **all filters** in each **convolutional layer**.
- Compact representation of the CPD :

$$\mathcal{T} = \llbracket \mathbf{A}, \mathbf{B}, \mathbf{C}
rbracket$$

ow-rank approximation

NORTON approach

NCATENATION approach

References O

Decomposition Then Pruning Process

- NORTON starts with the CP decomposition of all filters in the convolutional layers.
- Using a CPD-based similarity, pruning is applied to remove similar filters.

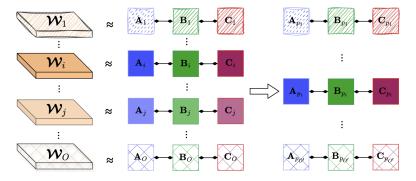


Figure : Decomposition of filters followed by pruning.

4

ow-rank approximations

NORTON approach

ONCATENATION approach

CPD-based similarity and similarity matrix

- Due to the ambiguities of the CPD, the factor matrices of two CPDs of the same tensor are not guaranteed to be identical.
- Let φ(.,.) be a function that computes the PABS (Principal Angles Between Subspaces) between two factor matrices. If the CPD is unique :

$$\begin{cases} \boldsymbol{\mathcal{W}}_i = & [\![\mathbf{A}_i, \mathbf{B}_i, \mathbf{C}_i]\!], \\ \boldsymbol{\mathcal{W}}_j = & [\![\mathbf{A}_j, \mathbf{B}_j, \mathbf{C}_j]\!], \\ \boldsymbol{\mathcal{W}}_i = & \boldsymbol{\mathcal{W}}_j. \end{cases} \Rightarrow \begin{cases} \phi(\mathbf{A}_i, \mathbf{A}_j) = 0, \\ \phi(\mathbf{B}_i, \mathbf{B}_j) = 0, \\ \phi(\mathbf{C}_i, \mathbf{C}_j) = 0. \end{cases}$$

- Even in non-unique cases, PABS is effective in identifying redundancies.
- A distance matrix **D** is computed as :

$$\mathbf{D}_{ij} = \alpha \mathbf{D}_{ij}^{\mathbf{A}} + \beta \mathbf{D}_{ij}^{\mathbf{B}} + \gamma \mathbf{D}_{ij}^{\mathbf{C}}$$

where $\mathbf{D}_{ij}^{\mathbf{A}} = \phi(\mathbf{A}_i, \mathbf{A}_j)$ (similarly for $\mathbf{D}_{ij}^{\mathbf{B}}$ and $\mathbf{D}_{ij}^{\mathbf{C}}$), and α , β , and γ are weight parameters such that $\alpha + \beta + \gamma = 1$.

 A straightforward algorithm is used to iteratively eliminate the similar filters.

Pruning 000 ow-rank approximations

NORTON approach

ONCATENATION approach

References O

Convolution Under CPD Format

Original convolution :

$$\mathcal{O}_k(i,j) = \sum_{m=0}^{K_h-1} \sum_{n=0}^{K_w-1} \sum_{p=0}^{I-1} \mathcal{I}(i+m,j+n,p) \cdot \mathcal{W}_k(m,n,p)$$

CPD of the weight tensor :

$$\mathcal{W}_k(m,n,p) = \sum_{r=0}^{R-1} \mathbf{A}_k(m,r) \cdot \mathbf{B}_k(n,r) \cdot \mathbf{C}_k(p,r)$$

Convolution under CPD :

 $\mathcal{O}_{k}(i,j) = \sum_{r=0}^{R-1} \sum_{m=0}^{K_{h}-1} \sum_{n=0}^{K_{w}-1} \sum_{p=0}^{I-1} \mathcal{I}(i+m,j+n,p) \cdot \mathbf{C}_{k}(p,r) \cdot \mathbf{B}_{k}(n,r) \cdot \mathbf{A}_{k}(m,r)$ $\underbrace{\mathcal{O}_{k}^{\mathsf{C}}(i+m,j+n,r)}_{\mathcal{O}_{k}^{\mathsf{A}}(i,j,r)}$

Implementation of CPD-based Convolution Layer

- The figure illustrates the convolution layer for an entire batch, denoted by B.
- The structure can be efficiently implemented using classical deep learning frameworks (*e.g.*, PyTorch, TensorFlow).

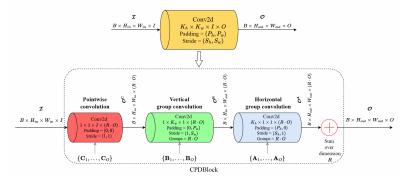


Figure : CPD-based convolution layer performing the operation for a batch of size B.

Illustration of the full NORTON Approach

- The process involves three main steps :
 - Filter decomposition : Filters in each convolution layer are decomposed using CPD.
 - **Filter pruning :** Similar filters are removed using a CPD-based similarity.
 - Fine-tuning : The pruned model is fine-tuned to restore performance.
- The result is a compact model with reduced parameters and computational cost.

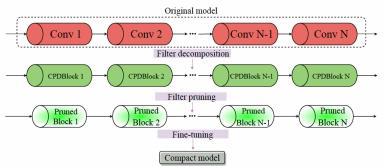


Figure : Overview of the NORTON approach applied to a CNN with N layers.

Pruning

ow-rank approximations

NORTON approach

ONCATENATION approac

References O

Compression Results

Method	Туре	Top-1	MACs (CR)	Params (CR)
VGG-16-BN		93.96	313.73M (00)	14.98M (00)
DECORE-500 [15]	Р	94.02	203.08M (35)	5.54M (63)
RGP-64_16 [7]	Р	92.76	78.78M (75)	3.81M (75)
NORTON (Ours)	Н	94.11	74.14M (77)	3.60M (76)
ALDS [10]	D	92.67	43.33M (86)	0.63M (96)
Dai et al. [4]	Н	93.03	37.76M (87)	0.43M (97)
Lebedev et al. [1]	D	93.07	68.53M (78)	3.22M (78)
HALOC [8]	D	93.16	43.92M (86)	0.30M (98)
EDP [6]	Н	93.52	62.40M (80)	0.66M (96)
CORING [12]	Р	93.54	66.95M (79)	1.90M (87)
NORTON (Ours)	Н	93.84	37.68M (88)	1.94M (87)
RGP-64_6 [7]	Р	91.45	31.37M (90)	1.43M (90)
DECORE-50 [15]	Р	91.68	36.85M (88)	0.26M (98)
NORTON (Ours)	Н	92.54	13.54M (96)	0.24M (98)
NORTON (Ours)	Н	90.32	4.58M (99)	0.14M (99)

Table 1 : VGG-16-BN on CIFAR-10

Method	Туре	Top-1	Top-5	MACs (CR)	Params (CR)
ResNet-50		76.15	92.87	4.09G (00)	25.50M (00)
Kim et al. [9]	D	75.34	92.68	N/A	17.60M (31)
DECORE-8 [15]	Р	76.31	93.02	3.54G (13)	22.69M (11)
Hinge [13]	Н	74.70	N/A	2.17G (47)	N/A
NORTON (Ours)	Н	76.58	93.43	2.08G (50)	13.51M (47)
CC-0.6 [5]	Н	74.54	92.25	1.53G (63)	10.58M (59)
RGP-64_30 [7]	Р	74.58	92.09	1.92G (53)	11.99M (53)
Phan et al. [2]	D	74.68	92.16	1.56G (62)	N/A
EDP [6]	Н	75.34	92.43	1.92G (53)	14.28M (44)
CORING [3]	Р	75.55	92.61	1.50B(64)	11.04M(57)
NORTON (Ours)	Н	75.95	92.91	1.49G (64)	10.52M (59)
DECORE-5 [15]	Р	72.06	90.82	1.60G (61)	8.87M (65)
RGP-64_16 [7]	Р	72.68	91.06	1.02G (75)	6.38M (75)
NORTON (Ours)	Н	73.65	91.64	0.92G (78)	5.88M (77)

Table 2 : ResNet-50 on ImageNet

NORTON's Efficacy in Downstream Tasks

- FasterRCNN : Object detection
- MaskRCNN : Instance segmentation
- KeypointRCNN : Human keypoint detection

Model	$AP^{0.5:0.95}$	$AP^{0.5}$	$AP^{0.75}$	AR^1	AR^{10}	AR^{100}	MACs (CR)	Params (CR)	FPS	Latency(ms)
FasterRCNN [64], [79]	0.37	0.58	0.39	0.31	0.48	0.51	134.85G (00)	41.81M (00)	12	85
NORTON (Ours)	0.38	0.59	0.42	0.32	0.50	0.52	111.47G (17)	30.72M (27)	19	53
NORTON (Ours)	0.32	0.52	0.34	0.29	0.46	0.48	93.39G (31)	22.01M (47)	25	41
MaskRCNN [65], [79]	0.34	0.55	0.36	0.29	0.45	0.47	134.85G (00)	44.46M (00)	9	111
NORTON (Ours)	0.35	0.57	0.37	0.30	0.46	0.48	111.47G (17)	33.36M (25)	14	73
NORTON (Ours)	0.32	0.52	0.33	0.28	0.44	0.46	93.39G (31)	24.65M (45)	20	50
				AR ^{0.5:0.95}	AR ^{0.5}	AR ^{0.75}				
KeypointRCNN [65], [79]	0.65	0.86	0.71	0.71	0.90	0.77	137.42G (00)	59.19M (00)	8	125
NORTON (Ours)	0.65	0.86	0.71	0.72	0.91	0.77	114.04G (17)	48.10M (19)	13	76
NORTON (Ours)	0.63	0.85	0.69	0.69	0.90	0.75	95.97G (30)	39.39M (34)	17	59

Table : Performance of NORTON's compressed ResNet-50/ImageNet as backbone on COCO2017

Pruning 000 ow-rank approximations

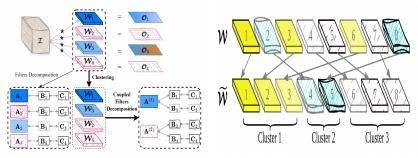
IORTON approach

CONCATENATION approach

References O

CONCATENATION Approach (in brief)

- Coupled tensor decompositiON for CompAct neTwork represENtATION.
- An ongoing work that uses CPD in a coupled manner instead of combining pruning and tensor decomposition.



Coupled decomposition approach.

Clustering of the filters.

Pruning 000 ow-rank approximations

NORTON approach

CONCATENATION approach

References O

Implementation of CONCATENATION

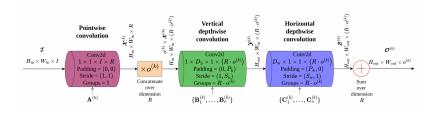


Figure : CONCATENATION implementation for convolutional layers.

Pruning

ow-rank approximation:

NORTON approach

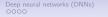
CONCATENATION approach

References O

Preliminary Results

Method	Туре	Top-1	MACs (CR)	Params (CR)
DenseNet-40 [35]		94.81	290.14M (00)	1.06M (00)
LCT [46]	TKD	94.14	N/A	0.58M (45)
HT-2 [44]	TKD	94.51	161.19M (44)	0.50M (52)
Hinge [54]	D+P+K	94.67	161.32M (44)	0.77M (28)
NORTON [19]	CPD+P	94.67	168.23M (42)	0.58M (45)
CC [52]	SVD+P	94.67	155.19M (47)	0.51M (52)
CORING [30]	SVD+P	94.71	173.39M (40)	0.62M (41)
CEPD [16]	TTD+P	94.79	145.53M (50)	0.50M (53)
CCPD (Ours)	CPD	94.85	141.22M (51)	0.46M (57)
HT-2 [44]	TKD	94.21	120.89M (58)	0.41M (62)
CC [52]	SVD+P	94.40	115.95M (60)	0.38M (64)
CEPD [16]	TTD+P	94.55	110.97M (62)	0.37M (65)
CCPD (Ours)	CPD	94.61	110.26M (62)	0.34M (68)

Table : DenseNet-40 on CIFAR-10 using CONCATENATION.



ow-rank approximations

NORTON approach 000000000 CONCATENATION appro

References

Thank You !

References :

- V. T. Pham, Y. Zniyed, and T. P. Nguyen. "Enhanced Network Compression Through Tensor Decompositions and Pruning". *IEEE Transactions on Neural Networks and Learning Systems*, 2024, pp. 1-13.
- V. T. Pham, Y. Zniyed, and T. P. Nguyen. "Efficient tensor decomposition-based filter pruning". *Neural Networks*, 2024, 106393.

GitHub repository.